13
0
livetrax/share/scripts/simple_arp.lua

520 lines
20 KiB
Lua
Raw Permalink Normal View History

ardour {
["type"] = "dsp",
name = "Arpeggiator",
category = "Effect",
author = "Albert Gräf",
license = "MIT",
description = [[simple_arp v0.3
Simple monophonic arpeggiator example with sample-accurate triggering, demonstrates how to process the new time_info data along with BBT info from Ardour's tempo map.
]]
}
-- Copyright (c) 2023 Albert Gräf, MIT License
-- The arpeggiator takes note input and constructs a new cyclic pattern each
-- time the input chord changes. Notes from the pattern are triggered at each
-- beat as transport is rolling. The plugin adjusts to the current time
-- signature, and also lets you subdivide the base pulse of the meter with a
-- control parameter in the setup. Note velocities for the different levels
-- can be adjusted in the setup as well.
-- NOTE: The scheme for varying note velocities in order to create rhythmic
-- accents is a bit on the simplistic side and only provides three distinct
-- velocity levels (bar, beat, and subdivision pulses). See barlow_arp.lua for
-- a more sophisticated implementation which uses Barlow's indispensability
-- formula.
-- The octave range can be adjusted up and down in the setup, notes from the
-- input chord are then repeated in the lower and/or upper octaves. The usual
-- pattern types are supported and can be selected in the setup: up, down,
-- up-down (exclusive and inclusive modes), order (notes are played in the
-- order in which they are input), and random.
-- The length of the notes can be set using the gate control as a fraction
-- (0..1 value) of the note division. The swing control lets you delay the
-- off-beat notes by varying amounts, given as a fraction ranging from 0.5 to
-- 0.75; a value of 0.5 produces a straight rhythm (no swing), 0.67 a triplet
-- feel.
-- A toggle in the setup lets you enable latch mode, in which the current
-- pattern keeps playing if you release all keys, until you start a new
-- chord. Another toggle enables sync mode, in which the pattern is properly
-- synchronized to bars and beats, no matter where you change chords. This
-- also works with patterns spanning multiple bars, and often creates a much
-- smoother arpeggio than just cycling through the pattern (which is the
-- default). Both latch and sync mode are especially helpful for imprecise
-- players (like me) who tend to miss beats in chord changes.
-- The bypass toggle, when engaged, suspends arpeggiator playback and sends
-- through the input notes as they are. This is intended to monitor the input
-- going into the arpeggiator, but can also be used as a performance tool.
-- (Disabling the arpeggiator plugin in Ardour has a similar effect, but
-- doesn't silence existing notes, which the bypass toggle does.)
-- All these parameters are plugin controls which can be automated and saved
-- in presets. Some factory presets are provided as well.
-- Last but not least, the plugin listens on all MIDI channels, and the last
-- MIDI channel used in the input also sets the MIDI channel for output. This
-- lets you play drumkits which expect their MIDI input on a certain MIDI
-- channel (usually channel 10), without having to fiddle with Ardour's MIDI
-- track parameters, provided that your MIDI controller can send data on the
-- appropriate MIDI channel.
function dsp_ioconfig ()
return { { midi_in = 1, midi_out = 1, audio_in = -1, audio_out = -1}, }
end
function dsp_options ()
return { time_info = true, regular_block_length = true }
end
function dsp_params ()
return
{
{ type = "input", name = "Division", min = 1, max = 16, default = 1, integer = true, doc = "number of subdivisions of the beat" },
{ type = "input", name = "Octave up", min = 0, max = 5, default = 0, integer = true, doc = "octave range up" },
{ type = "input", name = "Octave down", min = 0, max = 5, default = 0, integer = true, doc = "octave range down" },
{ type = "input", name = "Pattern", min = 1, max = 6, default = 1, integer = true, doc = "pattern style",
scalepoints =
{ ["1 up"] = 1, ["2 down"] = 2, ["3 exclusive"] = 3, ["4 inclusive"] = 4, ["5 order"] = 5, ["6 random"] = 6 } },
{ type = "input", name = "Velocity 1", min = 0, max = 127, default = 100, integer = true, doc = "velocity level (bar)" },
{ type = "input", name = "Velocity 2", min = 0, max = 127, default = 80, integer = true, doc = "velocity level (beat)" },
{ type = "input", name = "Velocity 3", min = 0, max = 127, default = 60, integer = true, doc = "velocity level (subdivision)" },
{ type = "input", name = "Latch", min = 0, max = 1, default = 0, toggled = true, doc = "toggle latch mode" },
{ type = "input", name = "Sync", min = 0, max = 1, default = 0, toggled = true, doc = "toggle sync mode" },
{ type = "input", name = "Bypass", min = 0, max = 1, default = 0, toggled = true, doc = "bypass the arpeggiator, pass through input notes" },
{ type = "input", name = "Gate", min = 0, max = 1, default = 1, doc = "gate as fraction of pulse length", scalepoints = { legato = 0 } },
{ type = "input", name = "Swing", min = 0.5, max = 0.75, default = 0.5, doc = "swing factor (0.67 = triplet feel)" },
}
end
function presets()
-- just a few basic examples for now, we'll add more stuff here later
return
{
{ name = "0 default", params = { Division = 1, ["Octave up"] = 0, ["Octave down"] = 0, Pattern = 1, ["Velocity 1"] = 100, ["Velocity 2"] = 80, ["Velocity 3"] = 60, Latch = 0, Sync = 0, Swing = 0.5, Gate = 1 } },
{ name = "1 latch", params = { Latch = 1, Sync = 0 } },
{ name = "2 latch and sync", params = { Latch = 1, Sync = 1 } },
{ name = "3 bass", params = { Division = 1, ["Octave up"] = 0, ["Octave down"] = 1, Pattern = 1, Swing = 0.5, Gate = 1 } },
{ name = "4 swing 60% #1 - synth", params = { Division = 2, ["Octave up"] = 1, ["Octave down"] = 1, Pattern = 3, Swing = 0.6, Gate = 1 } },
{ name = "5 swing 60% #2 - drums", params = { Division = 2, ["Octave up"] = 0, ["Octave down"] = 0, Pattern = 1, Swing = 0.6, Gate = 1 } },
{ name = "6 swing 66% #1 - synth", params = { Division = 2, ["Octave up"] = 1, ["Octave down"] = 1, Pattern = 3, Swing = 0.66, Gate = 1 } },
{ name = "7 swing 66% #2 - drums", params = { Division = 2, ["Octave up"] = 0, ["Octave down"] = 0, Pattern = 1, Swing = 0.66, Gate = 1 } },
}
end
-- debug level (1: print beat information in the log window, 2: also print the
-- current pattern whenever it changes, 3: also print note information, 4:
-- print everything)
local debug = 0
local chan = 0 -- MIDI output channel
local last_rolling -- last transport status, to detect changes
local last_beat, last_time -- last beat number and sample time
local last_num -- last note
local last_chan -- MIDI channel of last note
local last_gate -- off time of last note
local swing_time -- sample time of delayed pulse (swing)
local last_up, last_down, last_mode, last_sync, last_bypass -- previous params, to detect changes
local chord = {} -- current chord (note store)
local chord_index = 0 -- index of last chord note (0 if none)
local latched = {} -- latched notes
local pattern = {} -- current pattern
local index = 0 -- current pattern index (reset when pattern changes)
function dsp_run (_, _, n_samples)
assert (type(midiout) == "table")
assert (type(time) == "table")
assert (type(midiout) == "table")
local ctrl = CtrlPorts:array ()
-- We need to make sure that these are integer values. (The GUI enforces
-- this, but fractional values may occur through automation.)
local subdiv, up, down, mode = math.floor(ctrl[1]), math.floor(ctrl[2]), math.floor(ctrl[3]), math.floor(ctrl[4])
local vel1, vel2, vel3 = math.floor(ctrl[5]), math.floor(ctrl[6]), math.floor(ctrl[7])
local latch = ctrl[8] > 0
local sync = ctrl[9] > 0
local bypass = ctrl[10] > 0
local gate = ctrl[11]
-- It seems customary to specify swing using a percentage (or fraction)
-- where 50% = 1/2 denotes a straight rhythm (no swing) and 67% = 2/3 a
-- triplet feel. Here we translate this to a swing factor which is
-- multiplied with the note division time to give the timing of the
-- off-beat notes.
local swing = 1+2*(ctrl[12]-0.5)
-- rolling state: It seems that we need to check the transport state (as
-- given by Ardour's "transport finite state machine" = TFSM) here, even if
-- the transport is not actually moving yet. Otherwise some input notes may
-- errorneously slip through before playback really starts.
local rolling = Session:transport_state_rolling ()
local changed = false
if up ~= last_up or down ~= last_down or mode ~= last_mode then
last_up = up
last_down = down
last_mode = mode
changed = true
end
if sync ~= last_sync then
last_sync = sync
index = 0
end
if not latch and next(latched) ~= nil then
latched = {}
changed = true
end
if swing == 1 then
swing_time = nil
end
local all_notes_off = false
if bypass ~= last_bypass then
last_bypass = bypass
all_notes_off = true
end
if last_rolling ~= rolling then
last_rolling = rolling
-- transport change, send all-notes off (we only do this when transport
-- starts rolling, to silence any notes that may have been passed
-- through beforehand; note that Ardour automatically sends
-- all-notes-off to all MIDI channels anyway when transport is stopped)
if rolling then
all_notes_off = true
end
swing_time = nil
end
local k = 1
if all_notes_off then
--print("all-notes-off", chan)
midiout[k] = { time = 1, data = { 0xb0+chan, 123, 0 } }
k = k+1
end
for _,ev in ipairs (midiin) do
local status, num, val = table.unpack(ev.data)
local ch = status & 0xf
status = status & 0xf0
if not rolling or bypass then
-- arpeggiator is just listening, pass through all MIDI data
midiout[k] = ev
k = k+1
elseif status >= 0xb0 then
-- arpeggiator is playing, pass through all MIDI data that's not
-- note-related, i.e., control change, program change, channel
-- pressure, pitch wheel, and system messages
midiout[k] = ev
k = k+1
end
if status == 0x80 or status == 0x90 and val == 0 then
if debug >= 4 then
print("note off", num, val)
end
-- keep track of latched notes
if latch then
latched[num] = chord[num]
else
changed = true
end
chord[num] = nil
elseif status == 0x90 then
if debug >= 4 then
print("note on", num, val, "ch", ch)
end
if latch and next(chord) == nil then
-- new pattern, get rid of latched notes
latched = {}
end
chord_index = chord_index+1
chord[num] = chord_index
if latch and latched[num] then
-- avoid double notes in latch mode
latched[num] = nil
else
changed = true
end
chan = ch
elseif status == 0xb0 and num == 123 and ch == chan then
if debug >= 4 then
print("all notes off")
end
chord = {}
latched = {}
changed = true
end
end
if changed then
-- update the pattern
pattern = {}
function pattern_from_chord(pattern, chord)
for num, val in pairs(chord) do
table.insert(pattern, num)
for i = 1, down do
if num-i*12 >= 0 then
table.insert(pattern, num-i*12)
end
end
for i = 1, up do
if num+i*12 <= 127 then
table.insert(pattern, num+i*12)
end
end
end
end
pattern_from_chord(pattern, chord)
if latch then
-- add any latched notes
pattern_from_chord(pattern, latched)
end
table.sort(pattern) -- order by ascending notes (up pattern)
local n = #pattern
if n > 0 then
if mode == 2 then
-- down pattern, reverse the list
table.sort(pattern, function(a,b) return a > b end)
elseif mode == 3 then
-- add the reversal of the list excluding the last element
for i = 1, n-2 do
table.insert(pattern, pattern[n-i])
end
elseif mode == 4 then
-- add the reversal of the list including the last element
for i = 1, n-1 do
table.insert(pattern, pattern[n-i+1])
end
elseif mode == 5 then
-- order the pattern by chord indices
local k = chord_index+1
local idx = {}
-- build a table of indices which also includes octaves up and
-- down, ordering them first by octave and then by index
function index_from_chord(idx, chord)
for num, val in pairs(chord) do
for i = 1, down do
if num-i*12 >= 0 then
idx[num-i*12] = val - i*k
end
end
idx[num] = val
for i = 1, up do
if num+i*12 <= 127 then
idx[num+i*12] = val + i*k
end
end
end
end
index_from_chord(idx, chord)
if latch then
index_from_chord(idx, latched)
end
table.sort(pattern, function(a,b) return idx[a] < idx[b] end)
elseif mode == 6 then
-- random order
for i = n, 2, -1 do
local j = math.random(i)
pattern[i], pattern[j] = pattern[j], pattern[i]
end
end
if debug >= 2 then
local s = "pattern:"
for i, num in ipairs(pattern) do
s = s .. " " .. num
end
print(s)
end
index = 0 -- reset pattern to the start
else
chord_index = 0 -- pattern is empty, reset the chord index
if debug >= 2 then
print("pattern: <empty>")
end
end
end
if rolling and not bypass then
-- transport is rolling, not bypassed, so the arpeggiator is playing
if last_gate and last_num and
last_gate >= time.sample and last_gate < time.sample_end then
-- Gated notes don't normally fall on a beat, so we detect them
-- here. (If the gate time hasn't been set or we miss it, then the
-- note-off will be taken care of when the next note gets triggered,
-- see below.)
if debug >= 3 then
print("note off", last_num)
end
-- sample-accurate "off" time
local ts = last_gate - time.sample + 1
midiout[k] = { time = ts, data = { 0x80+last_chan, last_num, 100 } }
last_num = nil
k = k+1
end
-- Check whether a beat is due, so that we trigger the next note. We
-- want to do this in a sample-accurate manner in order to avoid jitter,
-- which makes things a little complicated. There are three cases to
-- consider here:
-- (1) Transport just started rolling or the playhead moved for some
-- reason, in which case we *must* output the note immediately in order
-- to not miss a beat (even if we're a bit late).
-- (2) The beat occurs exactly at the beginning of a processing cycle,
-- so we output the note immediately.
-- (3) The beat happens some time during the cycle, in which case we
-- calculate the sample at which the note is due.
local denom = time.ts_denominator * subdiv
-- beat numbers at start and end, scaled by base pulses and subdivisions
local b1, b2 = denom/4*time.beat, denom/4*time.beat_end
-- integral part of these
local bf1, bf2 = math.floor(b1), math.floor(b2)
-- sample times at start and end
local s1, s2 = time.sample, time.sample_end
-- current (nominal, i.e., unscaled) beat number, and its sample time
local bt, ts
if last_time and time.sample < last_time then
-- wrap-around (probably during a loop)
swing_time = nil
end
if swing_time and swing_time >= time.sample then
if swing_time < time.sample_end then
bt, ts = time.beat, swing_time
end
elseif last_beat ~= math.floor(time.beat) or bf1 == b1 then
-- sudden jump in transport => next beat is due immediately
bt, ts = time.beat, time.sample
elseif bf2 > bf1 and bf2 ~= b2 then
-- next beat is due some time in this cycle (we're assuming contant
-- tempo here, hence this number may be off in case the tempo is
-- changing very quickly during the cycle -- so don't do that)
local d = math.ceil((b2-bf2)/(b2-b1)*(s2-s1))
assert(d > 0)
bt, ts = time.beat_end, time.sample_end - d
end
if ts then
-- save the last nominal beat so that we can detect sudden changes of
-- the playhead later (e.g., when transport starts rolling, or at the
-- end of a loop when the playhead wraps around to the beginning)
last_beat = math.floor(bt)
-- same for sample time, to detect wrap-around
last_time = time.sample
-- get the tempo map information
local tm = Temporal.TempoMap.read ()
local pos = Temporal.timepos_t (ts)
local bbt = tm:bbt_at (pos)
local meter = tm:meter_at (pos)
local tempo = tm:tempo_at (pos)
-- duration of this step
local dur = tm:bbt_duration_at(pos, Temporal.BBT_Offset(0,1,0)):samples() / subdiv
-- next note offset in swing mode
local swing_dur = math.floor(dur * swing)
local swing_ts = ts + swing_dur
-- calculate the note-off time in samples, this is used if the gate
-- control is neither 0 nor 1
local gate_dur = math.floor(dur * gate)
-- adjust the gate duration for swing
if swing > 1 then
if swing_time then
gate_dur = gate_dur - math.floor(dur * (swing-1) * gate)
else
gate_dur = gate_dur + math.floor(dur * (swing-1) * gate)
end
end
local gate_ts = ts + gate_dur
local n = #pattern
ts = ts - time.sample + 1
if debug >= 1 then
-- print some debugging information: bbt, fractional beat number,
-- sample offset, current meter, current tempo
print (string.format("%s - %g [%d] - %d/%d - %g bpm", bbt:str(),
math.floor(denom*bt)/denom, ts-1,
meter:divisions_per_bar(), meter:note_value(),
tempo:quarter_notes_per_minute()))
end
if last_num then
-- kill the old note
if debug >= 3 then
print("note off", last_num)
end
midiout[k] = { time = ts, data = { 0x80+last_chan, last_num, 100 } }
last_num = nil
k = k+1
end
if n > 0 then
-- calculate a fractional pulse number from the current bbt
local p = bbt.beats-1 + math.max(0, bbt.ticks) / Temporal.ticks_per_beat
-- Calculate a basic velocity pattern: by default, 100 for the
-- first beat in a bar, 80 for the other non-fractional beats, 60
-- for everything else (subdivision pulses). These values can be
-- changed with the corresponding control. NOTE: There are much
-- more sophisticted ways to do this, but we try to keep things
-- simple here.
local v = vel3
if p == 0 then
v = vel1
elseif p == math.floor(p) then
v = vel2
end
--print("p", p, "v", v)
-- trigger the new note
if sync then
-- sync pattern to the bbt
local mdiv = meter:divisions_per_bar()
local npulses = mdiv * subdiv
local l = #pattern
local k = math.floor(p*subdiv) -- current index in bar
local n = math.floor(l/npulses) -- bars in pattern
if n > 0 then
k = k + index*npulses
if (k+1) % npulses == 0 then
-- next bar
index = (index+1) % n
end
end
num = pattern[k%l+1]
else
index = index%n + 1
num = pattern[index]
end
if debug >= 3 then
print("note on", num, v)
end
midiout[k] = { time = ts, data = { 0x90+chan, num, v } }
last_num = num
last_chan = chan
-- we take a very small gate value (close to 0) to mean legato
-- instead, which means the same as a 1 gate value here
local legato = gate_ts < time.sample_end
if gate < 1 and not legato then
-- Set the sample time at which the note-off is due.
last_gate = gate_ts
else
-- Otherwise don't set the off time in which case the
-- note-off gets triggered automatically above.
last_gate = nil
end
if swing_time or swing == 1 then
swing_time = nil
else
if debug >= 4 then
print("swing", swing_dur)
end
swing_time = swing_ts
end
end
end
else
-- transport not rolling or bypass; reset all cached status information
last_beat, last_time = nil, nil
swing_time = nil
end
if debug >= 1 and #midiout > 0 then
-- monitor memory usage of the Lua interpreter
print(string.format("mem: %0.2f KB", collectgarbage("count")))
end
end