ardour/libs/ardour/midi_track.cc

817 lines
21 KiB
C++

/*
Copyright (C) 2006 Paul Davis
Author: David Robillard
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <cmath>
#ifdef COMPILER_MSVC
#include <float.h>
// 'std::isinf()' and 'std::isnan()' are not available in MSVC.
#define isinf_local(val) !((bool)_finite((double)val))
#define isnan_local(val) (bool)_isnan((double)val)
#else
#define isinf_local std::isinf
#define isnan_local std::isnan
#endif
#include "pbd/enumwriter.h"
#include "pbd/types_convert.h"
#include "evoral/midi_util.h"
#include "ardour/amp.h"
#include "ardour/beats_samples_converter.h"
#include "ardour/buffer_set.h"
#include "ardour/debug.h"
#include "ardour/delivery.h"
#include "ardour/disk_reader.h"
#include "ardour/disk_writer.h"
#include "ardour/event_type_map.h"
#include "ardour/meter.h"
#include "ardour/midi_playlist.h"
#include "ardour/midi_port.h"
#include "ardour/midi_region.h"
#include "ardour/midi_track.h"
#include "ardour/monitor_control.h"
#include "ardour/parameter_types.h"
#include "ardour/port.h"
#include "ardour/processor.h"
#include "ardour/profile.h"
#include "ardour/route_group_specialized.h"
#include "ardour/session.h"
#include "ardour/session_playlists.h"
#include "ardour/types_convert.h"
#include "ardour/utils.h"
#include "pbd/i18n.h"
namespace ARDOUR {
class InterThreadInfo;
class MidiSource;
class Region;
class SMFSource;
}
using namespace std;
using namespace ARDOUR;
using namespace PBD;
MidiTrack::MidiTrack (Session& sess, string name, TrackMode mode)
: Track (sess, name, PresentationInfo::MidiTrack, mode, DataType::MIDI)
, _immediate_events(6096) // FIXME: size?
, _step_edit_ring_buffer(64) // FIXME: size?
, _note_mode (Sustained)
, _step_editing (false)
, _input_active (true)
{
_session.SessionLoaded.connect_same_thread (*this, boost::bind (&MidiTrack::restore_controls, this));
}
MidiTrack::~MidiTrack ()
{
}
int
MidiTrack::init ()
{
if (Track::init ()) {
return -1;
}
_input->changed.connect_same_thread (*this, boost::bind (&MidiTrack::track_input_active, this, _1, _2));
_disk_writer->set_note_mode (_note_mode);
_disk_reader->reset_tracker ();
return 0;
}
bool
MidiTrack::can_be_record_safe ()
{
if (_step_editing) {
return false;
}
return Track::can_be_record_safe ();
}
bool
MidiTrack::can_be_record_enabled ()
{
if (_step_editing) {
return false;
}
return Track::can_be_record_enabled ();
}
int
MidiTrack::set_state (const XMLNode& node, int version)
{
/* This must happen before Track::set_state(), as there will be a buffer
fill during that call, and we must fill buffers using the correct
_note_mode.
*/
if (!node.get_property (X_("note-mode"), _note_mode)) {
_note_mode = Sustained;
}
if (Track::set_state (node, version)) {
return -1;
}
// No destructive MIDI tracks (yet?)
_mode = Normal;
bool yn;
if (node.get_property ("input-active", yn)) {
set_input_active (yn);
}
ChannelMode playback_channel_mode = AllChannels;
ChannelMode capture_channel_mode = AllChannels;
node.get_property ("playback-channel-mode", playback_channel_mode);
node.get_property ("capture-channel-mode", capture_channel_mode);
if (node.get_property ("channel-mode", playback_channel_mode)) {
/* 3.0 behaviour where capture and playback modes were not separated */
capture_channel_mode = playback_channel_mode;
}
XMLProperty const * prop;
unsigned int playback_channel_mask = 0xffff;
unsigned int capture_channel_mask = 0xffff;
if ((prop = node.property ("playback-channel-mask")) != 0) {
sscanf (prop->value().c_str(), "0x%x", &playback_channel_mask);
}
if ((prop = node.property ("capture-channel-mask")) != 0) {
sscanf (prop->value().c_str(), "0x%x", &capture_channel_mask);
}
if ((prop = node.property ("channel-mask")) != 0) {
sscanf (prop->value().c_str(), "0x%x", &playback_channel_mask);
capture_channel_mask = playback_channel_mask;
}
set_playback_channel_mode (playback_channel_mode, playback_channel_mask);
set_capture_channel_mode (capture_channel_mode, capture_channel_mask);
pending_state = const_cast<XMLNode*> (&node);
if (_session.state_of_the_state() & Session::Loading) {
_session.StateReady.connect_same_thread (
*this, boost::bind (&MidiTrack::set_state_part_two, this));
} else {
set_state_part_two ();
}
return 0;
}
XMLNode&
MidiTrack::state(bool full_state)
{
XMLNode& root (Track::state(full_state));
XMLNode* freeze_node;
char buf[64];
if (_freeze_record.playlist) {
XMLNode* inode;
freeze_node = new XMLNode (X_("freeze-info"));
freeze_node->set_property ("playlist", _freeze_record.playlist->name());
freeze_node->set_property ("state", _freeze_record.state);
for (vector<FreezeRecordProcessorInfo*>::iterator i = _freeze_record.processor_info.begin(); i != _freeze_record.processor_info.end(); ++i) {
inode = new XMLNode (X_("processor"));
inode->set_property (X_("id"), id());
inode->add_child_copy ((*i)->state);
freeze_node->add_child_nocopy (*inode);
}
root.add_child_nocopy (*freeze_node);
}
root.set_property("playback-channel-mode", get_playback_channel_mode());
root.set_property("capture-channel-mode", get_capture_channel_mode());
snprintf (buf, sizeof(buf), "0x%x", get_playback_channel_mask());
root.set_property("playback-channel-mask", std::string(buf));
snprintf (buf, sizeof(buf), "0x%x", get_capture_channel_mask());
root.set_property("capture-channel-mask", std::string(buf));
root.set_property ("note-mode", _note_mode);
root.set_property ("step-editing", _step_editing);
root.set_property ("input-active", _input_active);
for (Controls::const_iterator c = _controls.begin(); c != _controls.end(); ++c) {
if (boost::dynamic_pointer_cast<MidiTrack::MidiControl>(c->second)) {
boost::shared_ptr<AutomationControl> ac = boost::dynamic_pointer_cast<AutomationControl> (c->second);
assert (ac);
root.add_child_nocopy (ac->get_state ());
}
}
return root;
}
void
MidiTrack::set_state_part_two ()
{
XMLNode* fnode;
/* This is called after all session state has been restored but before
have been made ports and connections are established.
*/
if (pending_state == 0) {
return;
}
if ((fnode = find_named_node (*pending_state, X_("freeze-info"))) != 0) {
_freeze_record.state = Frozen;
for (vector<FreezeRecordProcessorInfo*>::iterator i = _freeze_record.processor_info.begin(); i != _freeze_record.processor_info.end(); ++i) {
delete *i;
}
_freeze_record.processor_info.clear ();
std::string str;
if (fnode->get_property (X_("playlist"), str)) {
boost::shared_ptr<Playlist> pl = _session.playlists->by_name (str);
if (pl) {
_freeze_record.playlist = boost::dynamic_pointer_cast<MidiPlaylist> (pl);
} else {
_freeze_record.playlist.reset();
_freeze_record.state = NoFreeze;
return;
}
}
fnode->get_property (X_("state"), _freeze_record.state);
XMLNodeConstIterator citer;
XMLNodeList clist = fnode->children();
for (citer = clist.begin(); citer != clist.end(); ++citer) {
if ((*citer)->name() != X_("processor")) {
continue;
}
if (!(*citer)->get_property (X_("id"), str)) {
continue;
}
FreezeRecordProcessorInfo* frii = new FreezeRecordProcessorInfo (*((*citer)->children().front()),
boost::shared_ptr<Processor>());
frii->id = str;
_freeze_record.processor_info.push_back (frii);
}
}
return;
}
void
MidiTrack::restore_controls ()
{
// TODO order events (CC before PGM to set banks)
for (Controls::const_iterator c = _controls.begin(); c != _controls.end(); ++c) {
boost::shared_ptr<MidiTrack::MidiControl> mctrl = boost::dynamic_pointer_cast<MidiTrack::MidiControl>(c->second);
if (mctrl) {
mctrl->restore_value();
}
}
}
void
MidiTrack::update_controls(const BufferSet& bufs)
{
const MidiBuffer& buf = bufs.get_midi(0);
for (MidiBuffer::const_iterator e = buf.begin(); e != buf.end(); ++e) {
const Evoral::Event<samplepos_t>& ev = *e;
const Evoral::Parameter param = midi_parameter(ev.buffer(), ev.size());
const boost::shared_ptr<AutomationControl> control = automation_control (param);
if (control) {
control->set_double(ev.value(), _session.transport_sample(), false);
control->Changed (false, Controllable::NoGroup);
}
}
}
int
MidiTrack::no_roll (pframes_t nframes, samplepos_t start_sample, samplepos_t end_sample, bool state_changing)
{
int ret = Track::no_roll (nframes, start_sample, end_sample, state_changing);
if (ret == 0 && _step_editing) {
push_midi_input_to_step_edit_ringbuffer (nframes);
}
return ret;
}
void
MidiTrack::realtime_locate ()
{
Glib::Threads::RWLock::ReaderLock lm (_processor_lock, Glib::Threads::TRY_LOCK);
if (!lm.locked ()) {
return;
}
for (ProcessorList::iterator i = _processors.begin(); i != _processors.end(); ++i) {
(*i)->realtime_locate ();
}
_disk_reader->reset_tracker ();
}
void
MidiTrack::non_realtime_locate (samplepos_t pos)
{
Track::non_realtime_locate(pos);
boost::shared_ptr<MidiPlaylist> playlist = _disk_writer->midi_playlist();
if (!playlist) {
return;
}
/* Get the top unmuted region at this position. */
boost::shared_ptr<MidiRegion> region = boost::dynamic_pointer_cast<MidiRegion>(
playlist->top_unmuted_region_at(pos));
if (!region) {
return;
}
/* the source may be missing, but the control still referenced in the GUI */
if (!region->midi_source() || !region->model()) {
return;
}
Glib::Threads::Mutex::Lock lm (_control_lock, Glib::Threads::TRY_LOCK);
if (!lm.locked()) {
return;
}
/* Update track controllers based on its "automation". */
const samplepos_t origin = region->position() - region->start();
BeatsSamplesConverter bfc(_session.tempo_map(), origin);
for (Controls::const_iterator c = _controls.begin(); c != _controls.end(); ++c) {
boost::shared_ptr<MidiTrack::MidiControl> tcontrol;
boost::shared_ptr<Evoral::Control> rcontrol;
if ((tcontrol = boost::dynamic_pointer_cast<MidiTrack::MidiControl>(c->second)) &&
(rcontrol = region->control(tcontrol->parameter()))) {
const Temporal::Beats pos_beats = bfc.from(pos - origin);
if (rcontrol->list()->size() > 0) {
tcontrol->set_value(rcontrol->list()->eval(pos_beats.to_double()), Controllable::NoGroup);
}
}
}
}
void
MidiTrack::push_midi_input_to_step_edit_ringbuffer (samplecnt_t nframes)
{
PortSet& ports (_input->ports());
for (PortSet::iterator p = ports.begin(DataType::MIDI); p != ports.end(DataType::MIDI); ++p) {
Buffer& b (p->get_buffer (nframes));
const MidiBuffer* const mb = dynamic_cast<MidiBuffer*>(&b);
assert (mb);
for (MidiBuffer::const_iterator e = mb->begin(); e != mb->end(); ++e) {
const Evoral::Event<samplepos_t> ev(*e, false);
/* note on, since for step edit, note length is determined
elsewhere
*/
if (ev.is_note_on()) {
/* we don't care about the time for this purpose */
_step_edit_ring_buffer.write (0, ev.event_type(), ev.size(), ev.buffer());
}
}
}
}
void
MidiTrack::write_out_of_band_data (BufferSet& bufs, samplepos_t /*start*/, samplepos_t /*end*/, samplecnt_t nframes)
{
MidiBuffer& buf (bufs.get_midi (0));
update_controls (bufs);
// Append immediate events
if (_immediate_events.read_space()) {
DEBUG_TRACE (DEBUG::MidiIO, string_compose ("%1 has %2 of immediate events to deliver\n",
name(), _immediate_events.read_space()));
/* write as many of the immediate events as we can, but give "true" as
* the last argument ("stop on overflow in destination") so that we'll
* ship the rest out next time.
*
* the Port::port_offset() + (nframes-1) argument puts all these events at the last
* possible position of the output buffer, so that we do not
* violate monotonicity when writing. Port::port_offset() will
* be non-zero if we're in a split process cycle.
*/
_immediate_events.read (buf, 0, 1, Port::port_offset() + nframes - 1, true);
}
}
int
MidiTrack::export_stuff (BufferSet& buffers,
samplepos_t start,
samplecnt_t nframes,
boost::shared_ptr<Processor> endpoint,
bool include_endpoint,
bool for_export,
bool for_freeze)
{
if (buffers.count().n_midi() == 0) {
return -1;
}
Glib::Threads::RWLock::ReaderLock rlock (_processor_lock);
boost::shared_ptr<MidiPlaylist> mpl = _disk_writer->midi_playlist();
if (!mpl) {
return -2;
}
buffers.get_midi(0).clear();
if (mpl->read(buffers.get_midi(0), start, nframes, 0) != nframes) {
return -1;
}
//bounce_process (buffers, start, nframes, endpoint, include_endpoint, for_export, for_freeze);
return 0;
}
boost::shared_ptr<Region>
MidiTrack::bounce (InterThreadInfo& itt)
{
return bounce_range (_session.current_start_sample(), _session.current_end_sample(), itt, main_outs(), false);
}
boost::shared_ptr<Region>
MidiTrack::bounce_range (samplepos_t start,
samplepos_t end,
InterThreadInfo& itt,
boost::shared_ptr<Processor> endpoint,
bool include_endpoint)
{
vector<boost::shared_ptr<Source> > srcs;
return _session.write_one_track (*this, start, end, false, srcs, itt, endpoint, include_endpoint, false, false);
}
void
MidiTrack::freeze_me (InterThreadInfo& /*itt*/)
{
std::cerr << "MIDI freeze currently unsupported" << std::endl;
}
void
MidiTrack::unfreeze ()
{
_freeze_record.state = UnFrozen;
FreezeChange (); /* EMIT SIGNAL */
}
void
MidiTrack::set_note_mode (NoteMode m)
{
_note_mode = m;
_disk_writer->set_note_mode(m);
}
std::string
MidiTrack::describe_parameter (Evoral::Parameter param)
{
const std::string str(instrument_info().get_controller_name(param));
return str.empty() ? Automatable::describe_parameter(param) : str;
}
void
MidiTrack::midi_panic()
{
DEBUG_TRACE (DEBUG::MidiIO, string_compose ("%1 delivers panic data\n", name()));
for (uint8_t channel = 0; channel <= 0xF; channel++) {
uint8_t ev[3] = { ((uint8_t) (MIDI_CMD_CONTROL | channel)), ((uint8_t) MIDI_CTL_SUSTAIN), 0 };
write_immediate_event(3, ev);
ev[1] = MIDI_CTL_ALL_NOTES_OFF;
write_immediate_event(3, ev);
ev[1] = MIDI_CTL_RESET_CONTROLLERS;
write_immediate_event(3, ev);
}
}
/** \return true on success, false on failure (no buffer space left)
*/
bool
MidiTrack::write_immediate_event(size_t size, const uint8_t* buf)
{
if (!Evoral::midi_event_is_valid(buf, size)) {
cerr << "WARNING: Ignoring illegal immediate MIDI event" << endl;
return false;
}
return (_immediate_events.write (0, Evoral::MIDI_EVENT, size, buf) == size);
}
void
MidiTrack::set_parameter_automation_state (Evoral::Parameter param, AutoState state)
{
switch (param.type()) {
case MidiCCAutomation:
case MidiPgmChangeAutomation:
case MidiPitchBenderAutomation:
case MidiChannelPressureAutomation:
case MidiNotePressureAutomation:
case MidiSystemExclusiveAutomation:
/* The track control for MIDI parameters is for immediate events to act
as a control surface, write/touch for them is not currently
supported. */
return;
default:
Automatable::set_parameter_automation_state(param, state);
}
}
void
MidiTrack::MidiControl::restore_value ()
{
actually_set_value (get_value(), Controllable::NoGroup);
}
void
MidiTrack::MidiControl::actually_set_value (double val, PBD::Controllable::GroupControlDisposition group_override)
{
const Evoral::Parameter &parameter = _list ? _list->parameter() : Control::parameter();
const Evoral::ParameterDescriptor &desc = EventTypeMap::instance().descriptor(parameter);
bool valid = false;
if (isinf_local(val)) {
cerr << "MIDIControl value is infinity" << endl;
} else if (isnan_local(val)) {
cerr << "MIDIControl value is NaN" << endl;
} else if (val < desc.lower) {
cerr << "MIDIControl value is < " << desc.lower << endl;
} else if (val > desc.upper) {
cerr << "MIDIControl value is > " << desc.upper << endl;
} else {
valid = true;
}
if (!valid) {
return;
}
assert(val <= desc.upper);
if ( ! _list || ! automation_playback()) {
size_t size = 3;
uint8_t ev[3] = { parameter.channel(), uint8_t (val), 0 };
switch(parameter.type()) {
case MidiCCAutomation:
ev[0] += MIDI_CMD_CONTROL;
ev[1] = parameter.id();
ev[2] = int(val);
break;
case MidiPgmChangeAutomation:
size = 2;
ev[0] += MIDI_CMD_PGM_CHANGE;
ev[1] = int(val);
break;
case MidiChannelPressureAutomation:
size = 2;
ev[0] += MIDI_CMD_CHANNEL_PRESSURE;
ev[1] = int(val);
break;
case MidiNotePressureAutomation:
ev[0] += MIDI_CMD_NOTE_PRESSURE;
ev[1] = parameter.id();
ev[2] = int(val);
break;
case MidiPitchBenderAutomation:
ev[0] += MIDI_CMD_BENDER;
ev[1] = 0x7F & int(val);
ev[2] = 0x7F & (int(val) >> 7);
break;
default:
assert(false);
}
_route->write_immediate_event(size, ev);
}
AutomationControl::actually_set_value(val, group_override);
}
void
MidiTrack::set_step_editing (bool yn)
{
if (_session.record_status() != Session::Disabled) {
return;
}
if (yn != _step_editing) {
_step_editing = yn;
StepEditStatusChange (yn);
}
}
boost::shared_ptr<SMFSource>
MidiTrack::write_source (uint32_t)
{
return _disk_writer->midi_write_source ();
}
void
MidiTrack::set_playback_channel_mode(ChannelMode mode, uint16_t mask)
{
if (_playback_filter.set_channel_mode(mode, mask)) {
_session.set_dirty();
}
}
void
MidiTrack::set_capture_channel_mode(ChannelMode mode, uint16_t mask)
{
if (_capture_filter.set_channel_mode(mode, mask)) {
_session.set_dirty();
}
}
void
MidiTrack::set_playback_channel_mask (uint16_t mask)
{
if (_playback_filter.set_channel_mask(mask)) {
_session.set_dirty();
}
}
void
MidiTrack::set_capture_channel_mask (uint16_t mask)
{
if (_capture_filter.set_channel_mask(mask)) {
_session.set_dirty();
}
}
boost::shared_ptr<MidiPlaylist>
MidiTrack::midi_playlist ()
{
return boost::dynamic_pointer_cast<MidiPlaylist> (_playlists[DataType::MIDI]);
}
bool
MidiTrack::input_active () const
{
return _input_active;
}
void
MidiTrack::set_input_active (bool yn)
{
if (yn != _input_active) {
_input_active = yn;
map_input_active (yn);
InputActiveChanged (); /* EMIT SIGNAL */
}
}
void
MidiTrack::map_input_active (bool yn)
{
if (!_input) {
return;
}
PortSet& ports (_input->ports());
for (PortSet::iterator p = ports.begin(DataType::MIDI); p != ports.end(DataType::MIDI); ++p) {
boost::shared_ptr<MidiPort> mp = boost::dynamic_pointer_cast<MidiPort> (*p);
if (yn != mp->input_active()) {
mp->set_input_active (yn);
}
}
}
void
MidiTrack::track_input_active (IOChange change, void* /* src */)
{
if (change.type & IOChange::ConfigurationChanged) {
map_input_active (_input_active);
}
}
boost::shared_ptr<MidiBuffer>
MidiTrack::get_gui_feed_buffer () const
{
return _disk_reader->get_gui_feed_buffer ();
}
void
MidiTrack::act_on_mute ()
{
/* this is called right after our mute status has changed.
if we are now muted, send suitable output to shutdown
all our notes.
XXX we should should also stop all relevant note trackers.
*/
/* If we haven't got a diskstream yet, there's nothing to worry about,
and we can't call get_channel_mask() anyway.
*/
if (!_disk_writer) {
return;
}
if (muted() || _mute_master->muted_by_others_soloing_at (MuteMaster::AllPoints)) {
/* only send messages for channels we are using */
uint16_t mask = _playback_filter.get_channel_mask();
for (uint8_t channel = 0; channel <= 0xF; channel++) {
if ((1<<channel) & mask) {
DEBUG_TRACE (DEBUG::MidiIO, string_compose ("%1 delivers mute message to channel %2\n", name(), channel+1));
uint8_t ev[3] = { ((uint8_t) (MIDI_CMD_CONTROL | channel)), MIDI_CTL_SUSTAIN, 0 };
write_immediate_event (3, ev);
/* Note we do not send MIDI_CTL_ALL_NOTES_OFF here, since this may
silence notes that came from another non-muted track. */
}
}
/* Resolve active notes. */
_disk_reader->resolve_tracker(_immediate_events, Port::port_offset());
}
}
void
MidiTrack::monitoring_changed (bool self, Controllable::GroupControlDisposition gcd)
{
Track::monitoring_changed (self, gcd);
/* monitoring state changed, so flush out any on notes at the
* port level.
*/
PortSet& ports (_output->ports());
for (PortSet::iterator p = ports.begin(); p != ports.end(); ++p) {
boost::shared_ptr<MidiPort> mp = boost::dynamic_pointer_cast<MidiPort> (*p);
if (mp) {
mp->require_resolve ();
}
}
_disk_reader->reset_tracker ();
}
MonitorState
MidiTrack::monitoring_state () const
{
MonitorState ms = Track::monitoring_state();
if (ms == MonitoringSilence) {
return MonitoringInput;
}
return ms;
}
void
MidiTrack::filter_input (BufferSet& bufs)
{
_capture_filter.filter (bufs);
}