ardour/libs/canvas/grid.cc

372 lines
8.3 KiB
C++

/*
Copyright (C) 2018 Paul Davis
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <algorithm>
#include <vector>
#include "canvas/grid.h"
#include "canvas/rectangle.h"
using namespace ArdourCanvas;
using std::vector;
using std::max;
using std::cerr;
using std::endl;
Grid::Grid (Canvas* canvas)
: Item (canvas)
, row_spacing (0)
, col_spacing (0)
, top_padding (0), right_padding (0), bottom_padding (0), left_padding (0)
, top_margin (0), right_margin (0), bottom_margin (0), left_margin (0)
, homogenous (false)
{
bg = new Rectangle (this);
bg->set_outline (false);
bg->set_fill (false);
bg->hide ();
}
Grid::Grid (Item* parent)
: Item (parent)
, row_spacing (0)
, col_spacing (0)
, top_padding (0), right_padding (0), bottom_padding (0), left_padding (0)
, top_margin (0), right_margin (0), bottom_margin (0), left_margin (0)
, homogenous (false)
{
bg = new Rectangle (this);
bg->set_outline (false);
bg->set_fill (false);
bg->hide ();
}
Grid::Grid (Item* parent, Duple const & p)
: Item (parent, p)
, row_spacing (0)
, col_spacing (0)
, top_padding (0), right_padding (0), bottom_padding (0), left_padding (0)
, top_margin (0), right_margin (0), bottom_margin (0), left_margin (0)
, homogenous (true)
{
bg = new Rectangle (this);
bg->set_outline (false);
bg->set_fill (false);
bg->hide ();
}
void
Grid::set_homogenous (bool yn)
{
homogenous = yn;
}
void
Grid::render (Rect const & area, Cairo::RefPtr<Cairo::Context> context) const
{
Item::render_children (area, context);
}
void
Grid::compute_bounding_box () const
{
_bounding_box = Rect();
if (_items.empty()) {
_bounding_box_dirty = false;
return;
}
add_child_bounding_boxes (!collapse_on_hide);
if (_bounding_box) {
Rect r = _bounding_box;
_bounding_box = r.expand (outline_width() + top_margin + top_padding,
outline_width() + right_margin + right_padding,
outline_width() + bottom_margin + bottom_padding,
outline_width() + left_margin + left_padding);
}
_bounding_box_dirty = false;
}
void
Grid::set_row_spacing (double s)
{
row_spacing = s;
}
void
Grid::set_col_spacing (double s)
{
col_spacing = s;
}
void
Grid::set_padding (double t, double r, double b, double l)
{
double last = t;
top_padding = t;
if (r >= 0) {
last = r;
}
right_padding = last;
if (b >= 0) {
last = b;
}
bottom_padding = last;
if (l >= 0) {
last = l;
}
left_padding = last;
}
void
Grid::set_margin (double t, double r, double b, double l)
{
double last = t;
top_margin = t;
if (r >= 0) {
last = r;
}
right_margin = last;
if (b >= 0) {
last = b;
}
bottom_margin = last;
if (l >= 0) {
last = l;
}
left_margin = last;
}
void
Grid::reset_bg ()
{
if (_bounding_box_dirty) {
compute_bounding_box ();
}
if (!_bounding_box) {
bg->hide ();
return;
}
Rect r (_bounding_box);
/* XXX need to shrink by margin */
bg->set (r);
}
void
Grid::reposition_children ()
{
uint32_t max_row = 0;
uint32_t max_col = 0;
/* since we encourage dynamic and essentially random placement of
* children, begin by determining the maximum row and column extents given
* our current set of children and placements.
*/
for (CoordsByItem::const_iterator c = coords_by_item.begin(); c != coords_by_item.end(); ++c) {
if (collapse_on_hide && !c->second.item->visible()) {
continue;
}
max_col = max (max_col, (uint32_t) (c->second.x + c->second.col_span));
max_row = max (max_row, (uint32_t) (c->second.y + c->second.row_span));
}
/* Now compute the width of the widest child for each column, and the
* height of the tallest child for each row. Store the results in
* row_dimens and col_dimens, making sure they are suitably sized first.
*/
vector<double> row_dimens;
vector<double> col_dimens;
row_dimens.assign (max_row + 1, 0);
col_dimens.assign (max_col + 1, 0);
Rect uniform_cell_size;
if (homogenous) {
for (std::list<Item*>::iterator i = _items.begin(); i != _items.end(); ++i) {
if (*i == bg || (collapse_on_hide && !(*i)->visible())) {
continue;
}
Rect bb = (*i)->bounding_box();
if (!bb) {
continue;
}
CoordsByItem::const_iterator c = coords_by_item.find (*i);
uniform_cell_size.x1 = max (uniform_cell_size.x1, (bb.width()/c->second.col_span));
uniform_cell_size.y1 = max (uniform_cell_size.y1, (bb.height()/c->second.row_span));
}
for (uint32_t n = 0; n < max_col; ++n) {
col_dimens[n] = uniform_cell_size.width();
}
for (uint32_t n = 0; n < max_row; ++n) {
row_dimens[n] = uniform_cell_size.height();
}
for (std::list<Item*>::iterator i = _items.begin(); i != _items.end(); ++i) {
if (*i == bg || (collapse_on_hide && !(*i)->visible())) {
/* bg rect is not a normal child */
continue;
}
CoordsByItem::const_iterator c = coords_by_item.find (*i);
Rect r = uniform_cell_size;
r.x1 *= c->second.col_span;
r.y1 *= c->second.row_span;
(*i)->size_allocate (r);
}
} else {
for (std::list<Item*>::iterator i = _items.begin(); i != _items.end(); ++i) {
if (*i == bg || (collapse_on_hide && !(*i)->visible())) {
/* bg rect is not a normal child */
continue;
}
Rect bb = (*i)->bounding_box();
if (!bb) {
continue;
}
CoordsByItem::const_iterator c = coords_by_item.find (*i);
const double per_col_width = bb.width() / c->second.col_span;
const double per_row_height = bb.height() / c->second.row_span;
/* set the width of each column spanned by this item
*/
for (int n = 0; n < (int) c->second.col_span; ++n) {
col_dimens[c->second.x + n] = max (col_dimens[c->second.x + n], per_col_width);
}
for (int n = 0; n < (int) c->second.row_span; ++n) {
row_dimens[c->second.y + n] = max (row_dimens[c->second.y + n], per_row_height);
}
}
}
/* now progressively sum the row and column widths, once we're done:
*
* col_dimens: transformed into the x coordinate of the left edge of each column.
*
* row_dimens: transformed into the y coordinate of the upper left of each row,
*
*/
double current_right_edge = left_margin + left_padding;
for (uint32_t n = 0; n < max_col; ++n) {
if (col_dimens[n]) {
/* a width was defined for this column */
const double w = col_dimens[n]; /* save width of this column */
col_dimens[n] = current_right_edge;
current_right_edge = current_right_edge + w + col_spacing;
}
}
double current_top_edge = top_margin + top_padding;
for (uint32_t n = 0; n < max_row; ++n) {
if (row_dimens[n]) {
/* height defined for this row */
const double h = row_dimens[n]; /* save height */
row_dimens[n] = current_top_edge;
current_top_edge = current_top_edge + h + row_spacing;
}
}
/* position each item at the upper left of its (row, col) coordinate,
* given the width of all rows or columns before it.
*/
for (std::list<Item*>::iterator i = _items.begin(); i != _items.end(); ++i) {
CoordsByItem::const_iterator c = coords_by_item.find (*i);
if (c == coords_by_item.end()) {
continue;
}
/* do this even for hidden items - it will be corrected when
* they become visible again.
*/
(*i)->set_position (Duple (col_dimens[c->second.x], row_dimens[c->second.y]));
}
_bounding_box_dirty = true;
reset_bg ();
}
void
Grid::place (Item* i, double x, double y, double col_span, double row_span)
{
ChildInfo ci;
add (i);
ci.item = i;
ci.x = x;
ci.y = y;
ci.col_span = max (1.0, col_span);
ci.row_span = max (1.0, row_span);
coords_by_item.insert (std::make_pair (i, ci));
reposition_children ();
}
void
Grid::child_changed ()
{
/* catch visibility and size changes */
Item::child_changed ();
reposition_children ();
}
void
Grid::set_collapse_on_hide (bool yn)
{
if (collapse_on_hide != yn) {
collapse_on_hide = yn;
reposition_children ();
}
}