ardour/libs/vamp-plugins/OnsetDetect.cpp

495 lines
13 KiB
C++

/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
QM Vamp Plugin Set
Centre for Digital Music, Queen Mary, University of London.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#ifdef COMPILER_MSVC
#include <ardourext/float_cast.h>
#endif
#include "OnsetDetect.h"
#include <dsp/onsets/DetectionFunction.h>
#include <dsp/onsets/PeakPicking.h>
#include <dsp/tempotracking/TempoTrack.h>
using std::string;
using std::vector;
using std::cerr;
using std::endl;
float OnsetDetector::m_preferredStepSecs = 0.01161;
class OnsetDetectorData
{
public:
OnsetDetectorData(const DFConfig &config) : dfConfig(config) {
df = new DetectionFunction(config);
}
~OnsetDetectorData() {
delete df;
}
void reset() {
delete df;
df = new DetectionFunction(dfConfig);
dfOutput.clear();
origin = Vamp::RealTime::zeroTime;
}
DFConfig dfConfig;
DetectionFunction *df;
vector<double> dfOutput;
Vamp::RealTime origin;
};
OnsetDetector::OnsetDetector(float inputSampleRate) :
Vamp::Plugin(inputSampleRate),
m_d(0),
m_dfType(DF_COMPLEXSD),
m_sensitivity(50),
m_whiten(false)
{
}
OnsetDetector::~OnsetDetector()
{
delete m_d;
}
string
OnsetDetector::getIdentifier() const
{
return "qm-onsetdetector";
}
string
OnsetDetector::getName() const
{
return "Note Onset Detector";
}
string
OnsetDetector::getDescription() const
{
return "Estimate individual note onset positions";
}
string
OnsetDetector::getMaker() const
{
return "Queen Mary, University of London";
}
int
OnsetDetector::getPluginVersion() const
{
return 3;
}
string
OnsetDetector::getCopyright() const
{
return "Plugin by Christian Landone, Chris Duxbury and Juan Pablo Bello. Copyright (c) 2006-2009 QMUL - All Rights Reserved";
}
OnsetDetector::ParameterList
OnsetDetector::getParameterDescriptors() const
{
ParameterList list;
ParameterDescriptor desc;
desc.identifier = "dftype";
desc.name = "Onset Detection Function Type";
desc.description = "Method used to calculate the onset detection function";
desc.minValue = 0;
desc.maxValue = 4;
desc.defaultValue = 3;
desc.isQuantized = true;
desc.quantizeStep = 1;
desc.valueNames.push_back("High-Frequency Content");
desc.valueNames.push_back("Spectral Difference");
desc.valueNames.push_back("Phase Deviation");
desc.valueNames.push_back("Complex Domain");
desc.valueNames.push_back("Broadband Energy Rise");
list.push_back(desc);
desc.identifier = "sensitivity";
desc.name = "Onset Detector Sensitivity";
desc.description = "Sensitivity of peak-picker for onset detection";
desc.minValue = 0;
desc.maxValue = 100;
desc.defaultValue = 50;
desc.isQuantized = true;
desc.quantizeStep = 1;
desc.unit = "%";
desc.valueNames.clear();
list.push_back(desc);
desc.identifier = "whiten";
desc.name = "Adaptive Whitening";
desc.description = "Normalize frequency bin magnitudes relative to recent peak levels";
desc.minValue = 0;
desc.maxValue = 1;
desc.defaultValue = 0;
desc.isQuantized = true;
desc.quantizeStep = 1;
desc.unit = "";
list.push_back(desc);
return list;
}
float
OnsetDetector::getParameter(std::string name) const
{
if (name == "dftype") {
switch (m_dfType) {
case DF_HFC: return 0;
case DF_SPECDIFF: return 1;
case DF_PHASEDEV: return 2;
default: case DF_COMPLEXSD: return 3;
case DF_BROADBAND: return 4;
}
} else if (name == "sensitivity") {
return m_sensitivity;
} else if (name == "whiten") {
return m_whiten ? 1.0 : 0.0;
}
return 0.0;
}
void
OnsetDetector::setParameter(std::string name, float value)
{
if (name == "dftype") {
int dfType = m_dfType;
switch (lrintf(value)) {
case 0: dfType = DF_HFC; break;
case 1: dfType = DF_SPECDIFF; break;
case 2: dfType = DF_PHASEDEV; break;
default: case 3: dfType = DF_COMPLEXSD; break;
case 4: dfType = DF_BROADBAND; break;
}
if (dfType == m_dfType) return;
m_dfType = dfType;
m_program = "";
} else if (name == "sensitivity") {
if (m_sensitivity == value) return;
m_sensitivity = value;
m_program = "";
} else if (name == "whiten") {
if (m_whiten == (value > 0.5)) return;
m_whiten = (value > 0.5);
m_program = "";
}
}
OnsetDetector::ProgramList
OnsetDetector::getPrograms() const
{
ProgramList programs;
programs.push_back("");
programs.push_back("General purpose");
programs.push_back("Soft onsets");
programs.push_back("Percussive onsets");
return programs;
}
std::string
OnsetDetector::getCurrentProgram() const
{
if (m_program == "") return "";
else return m_program;
}
void
OnsetDetector::selectProgram(std::string program)
{
if (program == "General purpose") {
setParameter("dftype", 3); // complex
setParameter("sensitivity", 50);
setParameter("whiten", 0);
} else if (program == "Soft onsets") {
setParameter("dftype", 3); // complex
setParameter("sensitivity", 40);
setParameter("whiten", 1);
} else if (program == "Percussive onsets") {
setParameter("dftype", 4); // broadband energy rise
setParameter("sensitivity", 40);
setParameter("whiten", 0);
} else {
return;
}
m_program = program;
}
bool
OnsetDetector::initialise(size_t channels, size_t stepSize, size_t blockSize)
{
if (m_d) {
delete m_d;
m_d = 0;
}
if (channels < getMinChannelCount() ||
channels > getMaxChannelCount()) {
std::cerr << "OnsetDetector::initialise: Unsupported channel count: "
<< channels << std::endl;
return false;
}
if (stepSize != getPreferredStepSize()) {
std::cerr << "WARNING: OnsetDetector::initialise: Possibly sub-optimal step size for this sample rate: "
<< stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
}
if (blockSize != getPreferredBlockSize()) {
std::cerr << "WARNING: OnsetDetector::initialise: Possibly sub-optimal block size for this sample rate: "
<< blockSize << " (wanted " << (getPreferredBlockSize()) << ")" << std::endl;
}
DFConfig dfConfig;
dfConfig.DFType = m_dfType;
dfConfig.stepSize = stepSize;
dfConfig.frameLength = blockSize;
dfConfig.dbRise = 6.0 - m_sensitivity / 16.6667;
dfConfig.adaptiveWhitening = m_whiten;
dfConfig.whiteningRelaxCoeff = -1;
dfConfig.whiteningFloor = -1;
m_d = new OnsetDetectorData(dfConfig);
return true;
}
void
OnsetDetector::reset()
{
if (m_d) m_d->reset();
}
size_t
OnsetDetector::getPreferredStepSize() const
{
size_t step = size_t(m_inputSampleRate * m_preferredStepSecs + 0.0001);
if (step < 1) step = 1;
// std::cerr << "OnsetDetector::getPreferredStepSize: input sample rate is " << m_inputSampleRate << ", step size is " << step << std::endl;
return step;
}
size_t
OnsetDetector::getPreferredBlockSize() const
{
return getPreferredStepSize() * 2;
}
OnsetDetector::OutputList
OnsetDetector::getOutputDescriptors() const
{
OutputList list;
float stepSecs = m_preferredStepSecs;
// if (m_d) stepSecs = m_d->dfConfig.stepSecs;
OutputDescriptor onsets;
onsets.identifier = "onsets";
onsets.name = "Note Onsets";
onsets.description = "Perceived note onset positions";
onsets.unit = "";
onsets.hasFixedBinCount = true;
onsets.binCount = 0;
onsets.sampleType = OutputDescriptor::VariableSampleRate;
onsets.sampleRate = 1.0 / stepSecs;
OutputDescriptor df;
df.identifier = "detection_fn";
df.name = "Onset Detection Function";
df.description = "Probability function of note onset likelihood";
df.unit = "";
df.hasFixedBinCount = true;
df.binCount = 1;
df.hasKnownExtents = false;
df.isQuantized = false;
df.sampleType = OutputDescriptor::OneSamplePerStep;
OutputDescriptor sdf;
sdf.identifier = "smoothed_df";
sdf.name = "Smoothed Detection Function";
sdf.description = "Smoothed probability function used for peak-picking";
sdf.unit = "";
sdf.hasFixedBinCount = true;
sdf.binCount = 1;
sdf.hasKnownExtents = false;
sdf.isQuantized = false;
sdf.sampleType = OutputDescriptor::VariableSampleRate;
//!!! SV doesn't seem to handle these correctly in getRemainingFeatures
// sdf.sampleType = OutputDescriptor::FixedSampleRate;
sdf.sampleRate = 1.0 / stepSecs;
list.push_back(onsets);
list.push_back(df);
list.push_back(sdf);
return list;
}
OnsetDetector::FeatureSet
OnsetDetector::process(const float *const *inputBuffers,
Vamp::RealTime timestamp)
{
if (!m_d) {
cerr << "ERROR: OnsetDetector::process: "
<< "OnsetDetector has not been initialised"
<< endl;
return FeatureSet();
}
size_t len = m_d->dfConfig.frameLength / 2 + 1;
// float mean = 0.f;
// for (size_t i = 0; i < len; ++i) {
//// std::cerr << inputBuffers[0][i] << " ";
// mean += inputBuffers[0][i];
// }
//// std::cerr << std::endl;
// mean /= len;
// std::cerr << "OnsetDetector::process(" << timestamp << "): "
// << "dftype " << m_dfType << ", sens " << m_sensitivity
// << ", len " << len << ", mean " << mean << std::endl;
double *reals = new double[len];
double *imags = new double[len];
// We only support a single input channel
for (size_t i = 0; i < len; ++i) {
reals[i] = inputBuffers[0][i*2];
imags[i] = inputBuffers[0][i*2+1];
}
double output = m_d->df->processFrequencyDomain(reals, imags);
delete[] reals;
delete[] imags;
if (m_d->dfOutput.empty()) m_d->origin = timestamp;
m_d->dfOutput.push_back(output);
FeatureSet returnFeatures;
Feature feature;
feature.hasTimestamp = false;
feature.values.push_back(output);
// std::cerr << "df: " << output << std::endl;
returnFeatures[1].push_back(feature); // detection function is output 1
return returnFeatures;
}
OnsetDetector::FeatureSet
OnsetDetector::getRemainingFeatures()
{
if (!m_d) {
cerr << "ERROR: OnsetDetector::getRemainingFeatures: "
<< "OnsetDetector has not been initialised"
<< endl;
return FeatureSet();
}
if (m_dfType == DF_BROADBAND) {
for (size_t i = 0; i < m_d->dfOutput.size(); ++i) {
if (m_d->dfOutput[i] < ((110 - m_sensitivity) *
m_d->dfConfig.frameLength) / 200) {
m_d->dfOutput[i] = 0;
}
}
}
double aCoeffs[] = { 1.0000, -0.5949, 0.2348 };
double bCoeffs[] = { 0.1600, 0.3200, 0.1600 };
FeatureSet returnFeatures;
PPickParams ppParams;
ppParams.length = m_d->dfOutput.size();
// tau and cutoff appear to be unused in PeakPicking, but I've
// inserted some moderately plausible values rather than leave
// them unset. The QuadThresh values come from trial and error.
// The rest of these are copied from ttParams in the BeatTracker
// code: I don't claim to know whether they're good or not --cc
ppParams.tau = m_d->dfConfig.stepSize / m_inputSampleRate;
ppParams.alpha = 9;
ppParams.cutoff = m_inputSampleRate/4;
ppParams.LPOrd = 2;
ppParams.LPACoeffs = aCoeffs;
ppParams.LPBCoeffs = bCoeffs;
ppParams.WinT.post = 8;
ppParams.WinT.pre = 7;
ppParams.QuadThresh.a = (100 - m_sensitivity) / 1000.0;
ppParams.QuadThresh.b = 0;
ppParams.QuadThresh.c = (100 - m_sensitivity) / 1500.0;
PeakPicking peakPicker(ppParams);
double *ppSrc = new double[ppParams.length];
for (unsigned int i = 0; i < ppParams.length; ++i) {
ppSrc[i] = m_d->dfOutput[i];
}
vector<int> onsets;
peakPicker.process(ppSrc, ppParams.length, onsets);
for (size_t i = 0; i < onsets.size(); ++i) {
size_t index = onsets[i];
if (m_dfType != DF_BROADBAND) {
double prevDiff = 0.0;
while (index > 1) {
double diff = ppSrc[index] - ppSrc[index-1];
if (diff < prevDiff * 0.9) break;
prevDiff = diff;
--index;
}
}
size_t frame = index * m_d->dfConfig.stepSize;
Feature feature;
feature.hasTimestamp = true;
feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
(frame, lrintf(m_inputSampleRate));
returnFeatures[0].push_back(feature); // onsets are output 0
}
for (unsigned int i = 0; i < ppParams.length; ++i) {
Feature feature;
// feature.hasTimestamp = false;
feature.hasTimestamp = true;
size_t frame = i * m_d->dfConfig.stepSize;
feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime
(frame, lrintf(m_inputSampleRate));
feature.values.push_back(ppSrc[i]);
returnFeatures[2].push_back(feature); // smoothed df is output 2
}
return returnFeatures;
}