ardour/libs/surfaces/generic_midi/generic_midi_control_protoc...

1783 lines
43 KiB
C++

/*
* Copyright (C) 2006-2010 David Robillard <d@drobilla.net>
* Copyright (C) 2006-2018 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2008-2012 Carl Hetherington <carl@carlh.net>
* Copyright (C) 2012-2017 Tim Mayberry <mojofunk@gmail.com>
* Copyright (C) 2015-2019 Robin Gareus <robin@gareus.org>
* Copyright (C) 2015 Len Ovens <len@ovenwerks.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdint.h>
#include <sstream>
#include <algorithm>
#ifdef COMPILER_MSVC
#include <io.h> // Microsoft's nearest equivalent to <unistd.h>
#include <ardourext/misc.h>
#else
#include <regex.h>
#endif
#include <glibmm/fileutils.h>
#include <glibmm/miscutils.h>
#include "pbd/compose.h"
#include "pbd/convert.h"
#include "pbd/error.h"
#include "pbd/failed_constructor.h"
#include "pbd/file_utils.h"
#include "pbd/strsplit.h"
#include "pbd/types_convert.h"
#include "pbd/xml++.h"
#include "midi++/port.h"
#include "ardour/async_midi_port.h"
#include "ardour/audioengine.h"
#include "ardour/auditioner.h"
#include "ardour/directory_names.h"
#include "ardour/filename_extensions.h"
#include "ardour/search_paths.h"
#include "ardour/session.h"
#include "ardour/midi_ui.h"
#include "ardour/plugin_insert.h"
#include "ardour/rc_configuration.h"
#include "ardour/midiport_manager.h"
#include "ardour/debug.h"
#include "generic_midi_control_protocol.h"
#include "midicontrollable.h"
#include "midifunction.h"
#include "midiaction.h"
#include "pbd/abstract_ui.cc" // instantiate template
#include "pbd/i18n.h"
using namespace ARDOUR;
using namespace PBD;
using namespace Glib;
using namespace std;
GenericMidiControlProtocol::GenericMidiControlProtocol (Session& s)
: ControlProtocol (s, _("Generic MIDI"))
, AbstractUI<GenericMIDIRequest> (name())
, connection_state (ConnectionState (0))
, _motorised (false)
, _threshold (10)
, gui (0)
{
std::shared_ptr<ARDOUR::Port> inp;
std::shared_ptr<ARDOUR::Port> outp;
inp = AudioEngine::instance()->register_input_port (DataType::MIDI, _("MIDI Control In"), true);
outp = AudioEngine::instance()->register_output_port (DataType::MIDI, _("MIDI Control Out"), true);
if (inp == 0 || outp == 0) {
throw failed_constructor();
}
_input_port = std::dynamic_pointer_cast<AsyncMIDIPort>(inp);
_output_port = std::dynamic_pointer_cast<AsyncMIDIPort>(outp);
_input_bundle.reset (new ARDOUR::Bundle (_("Generic MIDI Control In"), true));
_output_bundle.reset (new ARDOUR::Bundle (_("Generic MIDI Control Out"), false));
_input_bundle->add_channel (
"",
ARDOUR::DataType::MIDI,
session->engine().make_port_name_non_relative (inp->name())
);
_output_bundle->add_channel (
"",
ARDOUR::DataType::MIDI,
session->engine().make_port_name_non_relative (outp->name())
);
session->BundleAddedOrRemoved ();
do_feedback = false;
_feedback_interval = 10000; // microseconds
last_feedback_time = 0;
_current_bank = 0;
_bank_size = 0;
/* these signals are emitted by our event loop thread
* and we may as well handle them right there in the same the same
* thread
*/
Controllable::StartLearning.connect_same_thread (*this, boost::bind (&GenericMidiControlProtocol::start_learning, this, _1));
Controllable::StopLearning.connect_same_thread (*this, boost::bind (&GenericMidiControlProtocol::stop_learning, this, _1));
/* this signal is emitted by the process() callback, and if
* send_feedback() is going to do anything, it should do it in the
* context of the process() callback itself.
*/
Session::SendFeedback.connect_same_thread (*this, boost::bind (&GenericMidiControlProtocol::send_feedback, this));
/* this one is cross-thread */
PresentationInfo::Change.connect (*this, MISSING_INVALIDATOR, boost::bind (&GenericMidiControlProtocol::reset_controllables, this), this);
/* Catch port connections and disconnections (cross-thread) */
ARDOUR::AudioEngine::instance()->PortConnectedOrDisconnected.connect (_port_connection, MISSING_INVALIDATOR,
boost::bind (&GenericMidiControlProtocol::connection_handler, this, _1, _2, _3, _4, _5),
this);
reload_maps ();
}
GenericMidiControlProtocol::~GenericMidiControlProtocol ()
{
set_active (false);
if (_input_port) {
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("unregistering input port %1\n", std::shared_ptr<ARDOUR::Port>(_input_port)->name()));
Glib::Threads::Mutex::Lock em (AudioEngine::instance()->process_lock());
AudioEngine::instance()->unregister_port (_input_port);
_input_port.reset ();
}
if (_output_port) {
_output_port->drain (10000, 250000); /* check every 10 msecs, wait up to 1/4 second for the port to drain */
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("unregistering output port %1\n", std::shared_ptr<ARDOUR::Port>(_output_port)->name()));
Glib::Threads::Mutex::Lock em (AudioEngine::instance()->process_lock());
AudioEngine::instance()->unregister_port (_output_port);
_output_port.reset ();
}
drop_all ();
tear_down_gui ();
}
list<std::shared_ptr<ARDOUR::Bundle> >
GenericMidiControlProtocol::bundles ()
{
list<std::shared_ptr<ARDOUR::Bundle> > b;
if (_input_bundle) {
b.push_back (_input_bundle);
b.push_back (_output_bundle);
}
return b;
}
static bool
midi_map_filter (const string &str, void* /*arg*/)
{
return (str.length() > strlen(midi_map_suffix) &&
str.find (midi_map_suffix) == (str.length() - strlen (midi_map_suffix)));
}
void
GenericMidiControlProtocol::reload_maps ()
{
vector<string> midi_maps;
Searchpath spath (system_midi_map_search_path());
spath += user_midi_map_directory ();
find_files_matching_filter (midi_maps, spath, midi_map_filter, 0, false, true);
if (midi_maps.empty()) {
cerr << "No MIDI maps found using " << spath.to_string() << endl;
return;
}
for (vector<string>::iterator i = midi_maps.begin(); i != midi_maps.end(); ++i) {
string fullpath = *i;
XMLTree tree;
if (!tree.read (fullpath.c_str())) {
continue;
}
MapInfo mi;
std::string str;
if (!tree.root()->get_property ("name", str)) {
continue;
}
mi.name = str;
mi.path = fullpath;
map_info.push_back (mi);
}
}
void
GenericMidiControlProtocol::drop_all ()
{
DEBUG_TRACE (DEBUG::GenericMidi, "Drop all bindings\n");
Glib::Threads::Mutex::Lock lm (pending_lock);
Glib::Threads::Mutex::Lock lm2 (controllables_lock);
for (MIDIControllables::iterator i = controllables.begin(); i != controllables.end(); ++i) {
delete *i;
}
controllables.clear ();
for (MIDIPendingControllables::iterator i = pending_controllables.begin(); i != pending_controllables.end(); ++i) {
(*i)->connection.disconnect();
if ((*i)->own_mc) {
delete (*i)->mc;
}
delete *i;
}
pending_controllables.clear ();
for (MIDIFunctions::iterator i = functions.begin(); i != functions.end(); ++i) {
delete *i;
}
functions.clear ();
for (MIDIActions::iterator i = actions.begin(); i != actions.end(); ++i) {
delete *i;
}
actions.clear ();
}
void
GenericMidiControlProtocol::drop_bindings ()
{
DEBUG_TRACE (DEBUG::GenericMidi, "Drop bindings, leave learned\n");
Glib::Threads::Mutex::Lock lm2 (controllables_lock);
for (MIDIControllables::iterator i = controllables.begin(); i != controllables.end(); ) {
if (!(*i)->learned()) {
delete *i;
i = controllables.erase (i);
} else {
++i;
}
}
for (MIDIFunctions::iterator i = functions.begin(); i != functions.end(); ++i) {
delete *i;
}
functions.clear ();
_current_binding = "";
_bank_size = 0;
_current_bank = 0;
}
void
GenericMidiControlProtocol::do_request (GenericMIDIRequest* req)
{
if (req->type == CallSlot) {
call_slot (MISSING_INVALIDATOR, req->the_slot);
} else if (req->type == Quit) {
stop ();
}
}
int
GenericMidiControlProtocol::stop ()
{
BaseUI::quit ();
return 0;
}
void
GenericMidiControlProtocol::thread_init ()
{
pthread_set_name (event_loop_name().c_str());
PBD::notify_event_loops_about_thread_creation (pthread_self(), event_loop_name(), 2048);
ARDOUR::SessionEvent::create_per_thread_pool (event_loop_name(), 128);
set_thread_priority ();
}
int
GenericMidiControlProtocol::set_active (bool yn)
{
DEBUG_TRACE (DEBUG::GenericMidi, string_compose("GenericMIDI::set_active init with yn: '%1'\n", yn));
if (yn == active()) {
return 0;
}
if (yn) {
BaseUI::run ();
} else {
BaseUI::quit ();
}
ControlProtocol::set_active (yn);
DEBUG_TRACE (DEBUG::GenericMidi, string_compose("GenericMIDI::set_active done with yn: '%1'\n", yn));
return 0;
}
void
GenericMidiControlProtocol::set_feedback_interval (microseconds_t ms)
{
_feedback_interval = ms;
}
void
GenericMidiControlProtocol::send_feedback ()
{
/* This is executed in RT "process" context", so no blocking calls
*/
if (!do_feedback) {
return;
}
microseconds_t now = get_microseconds ();
if (last_feedback_time != 0) {
if ((now - last_feedback_time) < _feedback_interval) {
return;
}
}
_send_feedback ();
last_feedback_time = now;
}
void
GenericMidiControlProtocol::_send_feedback ()
{
/* This is executed in RT "process" context", so no blocking calls
*/
const int32_t bufsize = 16 * 1024; /* XXX too big */
MIDI::byte buf[bufsize];
int32_t bsize = bufsize;
/* XXX: due to bugs in some ALSA / JACK MIDI bridges, we have to do separate
writes for each controllable here; if we send more than one MIDI message
in a single jack_midi_event_write then some bridges will only pass the
first on to ALSA.
*/
Glib::Threads::Mutex::Lock lm (controllables_lock, Glib::Threads::TRY_LOCK);
if (!lm.locked ()) {
return;
}
for (MIDIControllables::iterator r = controllables.begin(); r != controllables.end(); ++r) {
MIDI::byte* end = (*r)->write_feedback (buf, bsize);
if (end != buf) {
_output_port->write (buf, (int32_t) (end - buf), 0);
}
}
}
bool
GenericMidiControlProtocol::start_learning (std::weak_ptr <Controllable> wc)
{
std::shared_ptr<Controllable> c = wc.lock ();
if (!c) {
return false;
}
Glib::Threads::Mutex::Lock lm2 (controllables_lock);
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Learn binding: Controlable number: %1\n", c));
/* drop any existing mappings for the same controllable for which
* learning has just started.
*/
MIDIControllables::iterator tmp;
for (MIDIControllables::iterator i = controllables.begin(); i != controllables.end(); ) {
tmp = i;
++tmp;
if ((*i)->get_controllable() == c) {
delete (*i);
controllables.erase (i);
}
i = tmp;
}
/* check pending controllables (those for which a learn is underway) to
* see if it is for the same one for which learning has just started.
*/
{
Glib::Threads::Mutex::Lock lm (pending_lock);
for (MIDIPendingControllables::iterator i = pending_controllables.begin(); i != pending_controllables.end(); ) {
if (((*i)->mc)->get_controllable() == c) {
(*i)->connection.disconnect();
if ((*i)->own_mc) {
delete (*i)->mc;
}
delete *i;
i = pending_controllables.erase (i);
} else {
++i;
}
}
}
MIDIControllable* mc = 0;
bool own_mc = false;
for (MIDIControllables::iterator i = controllables.begin(); i != controllables.end(); ++i) {
if ((*i)->get_controllable() && ((*i)->get_controllable()->id() == c->id())) {
mc = *i;
break;
}
}
if (!mc) {
mc = new MIDIControllable (this, *_input_port->parser(), c, false);
own_mc = true;
}
/* stuff the new controllable into pending */
{
Glib::Threads::Mutex::Lock lm (pending_lock);
MIDIPendingControllable* element = new MIDIPendingControllable (mc, own_mc);
c->LearningFinished.connect_same_thread (element->connection, boost::bind (&GenericMidiControlProtocol::learning_stopped, this, mc));
pending_controllables.push_back (element);
}
mc->learn_about_external_control ();
return true;
}
void
GenericMidiControlProtocol::learning_stopped (MIDIControllable* mc)
{
Glib::Threads::Mutex::Lock lm (pending_lock);
Glib::Threads::Mutex::Lock lm2 (controllables_lock);
for (MIDIPendingControllables::iterator i = pending_controllables.begin(); i != pending_controllables.end(); ) {
if ( (*i)->mc == mc) {
(*i)->connection.disconnect();
delete *i;
i = pending_controllables.erase(i);
} else {
++i;
}
}
/* add the controllable for which learning stopped to our list of
* controllables
*/
controllables.push_back (mc);
}
void
GenericMidiControlProtocol::stop_learning (std::weak_ptr<PBD::Controllable> wc)
{
std::shared_ptr<Controllable> c = wc.lock ();
if (!c) {
return;
}
Glib::Threads::Mutex::Lock lm (pending_lock);
Glib::Threads::Mutex::Lock lm2 (controllables_lock);
MIDIControllable* dptr = 0;
/* learning timed out, and we've been told to consider this attempt to learn to be cancelled. find the
relevant MIDIControllable and remove it from the pending list.
*/
for (MIDIPendingControllables::iterator i = pending_controllables.begin(); i != pending_controllables.end(); ++i) {
if (((*i)->mc)->get_controllable() == c) {
(*i)->mc->stop_learning ();
dptr = (*i)->mc;
(*i)->connection.disconnect();
delete *i;
pending_controllables.erase (i);
break;
}
}
delete dptr;
}
void
GenericMidiControlProtocol::check_used_event (int pos, int control_number)
{
Glib::Threads::Mutex::Lock lm2 (controllables_lock);
MIDI::channel_t channel = (pos & 0xf);
MIDI::byte value = control_number;
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("checking for used event: Channel: %1 Controller: %2 value: %3\n", (int) channel, (pos & 0xf0), (int) value));
// Remove any old binding for this midi channel/type/value pair
for (MIDIControllables::iterator iter = controllables.begin(); iter != controllables.end();) {
MIDIControllable* existingBinding = (*iter);
if ( (existingBinding->get_control_type() & 0xf0 ) == (pos & 0xf0) && (existingBinding->get_control_channel() & 0xf ) == channel ) {
if ( ((int) existingBinding->get_control_additional() == (int) value) || ((pos & 0xf0) == MIDI::pitchbend)) {
DEBUG_TRACE (DEBUG::GenericMidi, "checking: found match, delete old binding.\n");
delete existingBinding;
iter = controllables.erase (iter);
} else {
++iter;
}
} else {
++iter;
}
}
for (MIDIFunctions::iterator iter = functions.begin(); iter != functions.end();) {
MIDIFunction* existingBinding = (*iter);
if ( (existingBinding->get_control_type() & 0xf0 ) == (pos & 0xf0) && (existingBinding->get_control_channel() & 0xf ) == channel ) {
if ( ((int) existingBinding->get_control_additional() == (int) value) || ((pos & 0xf0) == MIDI::pitchbend)) {
DEBUG_TRACE (DEBUG::GenericMidi, "checking: found match, delete old binding.\n");
delete existingBinding;
iter = functions.erase (iter);
} else {
++iter;
}
} else {
++iter;
}
}
for (MIDIActions::iterator iter = actions.begin(); iter != actions.end();) {
MIDIAction* existingBinding = (*iter);
if ( (existingBinding->get_control_type() & 0xf0 ) == (pos & 0xf0) && (existingBinding->get_control_channel() & 0xf ) == channel ) {
if ( ((int) existingBinding->get_control_additional() == (int) value) || ((pos & 0xf0) == MIDI::pitchbend)) {
DEBUG_TRACE (DEBUG::GenericMidi, "checking: found match, delete old binding.\n");
delete existingBinding;
iter = actions.erase (iter);
} else {
++iter;
}
} else {
++iter;
}
}
}
XMLNode&
GenericMidiControlProtocol::get_state () const
{
XMLNode& node (ControlProtocol::get_state());
XMLNode* child;
child = new XMLNode (X_("Input"));
child->add_child_nocopy (std::shared_ptr<ARDOUR::Port>(_input_port)->get_state());
node.add_child_nocopy (*child);
child = new XMLNode (X_("Output"));
child->add_child_nocopy (std::shared_ptr<ARDOUR::Port>(_output_port)->get_state());
node.add_child_nocopy (*child);
node.set_property (X_("feedback-interval"), _feedback_interval);
node.set_property (X_("threshold"), _threshold);
node.set_property (X_("motorized"), _motorised);
if (!_current_binding.empty()) {
node.set_property ("binding", _current_binding);
}
XMLNode* children = new XMLNode (X_("Controls"));
node.add_child_nocopy (*children);
Glib::Threads::Mutex::Lock lm2 (controllables_lock);
for (auto const & c : controllables) {
/* we don't care about bindings that come from a bindings map, because
they will all be reset/recreated when we load the relevant bindings
file.
*/
if (c->get_controllable() && c->learned()) {
children->add_child_nocopy (c->get_state());
}
}
return node;
}
int
GenericMidiControlProtocol::set_state (const XMLNode& node, int version)
{
XMLNodeList nlist;
XMLNodeConstIterator niter;
XMLNode const* child;
if (ControlProtocol::set_state (node, version)) {
return -1;
}
if ((child = node.child (X_("Input"))) != 0) {
XMLNode* portnode = child->child (Port::state_node_name.c_str());
if (portnode) {
portnode->remove_property ("name");
std::shared_ptr<ARDOUR::Port>(_input_port)->set_state (*portnode, version);
}
}
if ((child = node.child (X_("Output"))) != 0) {
XMLNode* portnode = child->child (Port::state_node_name.c_str());
if (portnode) {
portnode->remove_property ("name");
std::shared_ptr<ARDOUR::Port>(_output_port)->set_state (*portnode, version);
}
}
if (!node.get_property ("feedback-interval", _feedback_interval)) {
_feedback_interval = 10000;
}
std::shared_ptr<Controllable> c;
{
Glib::Threads::Mutex::Lock lm (pending_lock);
for (MIDIPendingControllables::iterator i = pending_controllables.begin(); i != pending_controllables.end(); ++i) {
(*i)->connection.disconnect();
if ((*i)->own_mc) {
delete (*i)->mc;
}
delete *i;
}
pending_controllables.clear ();
}
std::string str;
// midi map has to be loaded first so learned binding can go on top
if (node.get_property ("binding", str)) {
for (list<MapInfo>::iterator x = map_info.begin(); x != map_info.end(); ++x) {
if (str == (*x).name) {
load_bindings ((*x).path);
break;
}
}
}
/* Restore any custom settings which may have been overwritten by load_bindings */
if (!node.get_property ("threshold", _threshold)) {
_threshold = 10;
}
if (!node.get_property ("motorized", _motorised)) {
_motorised = false;
}
/* Load up specific bindings from the
* <Controls><MidiControllable>...</MidiControllable><Controls> section
*/
bool load_dynamic_bindings = false;
node.get_property ("session-state", load_dynamic_bindings);
if (load_dynamic_bindings) {
Glib::Threads::Mutex::Lock lm2 (controllables_lock);
XMLNode* controls_node = node.child (X_("Controls"));
if (controls_node) {
nlist = controls_node->children();
if (!nlist.empty()) {
for (niter = nlist.begin(); niter != nlist.end(); ++niter) {
PBD::ID id;
if ((*niter)->get_property ("id", id)) {
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("Relearned binding for session: Control ID: %1\n", id.to_s()));
std::shared_ptr<PBD::Controllable> c = Controllable::by_id (id);
if (c) {
MIDIControllable* mc = new MIDIControllable (this, *_input_port->parser(), c, false);
if (mc->set_state (**niter, version) == 0) {
controllables.push_back (mc);
} else {
warning << string_compose ("Generic MIDI control: Failed to set state for Control ID: %1\n", id.to_s());
delete mc;
}
} else {
warning << string_compose (
_("Generic MIDI control: controllable %1 not found in session (ignored)"),
id.to_s()) << endmsg;
}
}
}
}
}
}
return 0;
}
int
GenericMidiControlProtocol::set_feedback (bool yn)
{
do_feedback = yn;
last_feedback_time = 0;
return 0;
}
bool
GenericMidiControlProtocol::get_feedback () const
{
return do_feedback;
}
int
GenericMidiControlProtocol::load_bindings (const string& xmlpath)
{
DEBUG_TRACE (DEBUG::GenericMidi, "Load bindings: Reading midi map\n");
XMLTree state_tree;
if (!state_tree.read (xmlpath.c_str())) {
error << string_compose(_("Could not understand MIDI bindings file %1"), xmlpath) << endmsg;
return -1;
}
XMLNode* root = state_tree.root();
if (root->name() != X_("ArdourMIDIBindings")) {
error << string_compose (_("MIDI Bindings file %1 is not really a MIDI bindings file"), xmlpath) << endmsg;
return -1;
}
const XMLProperty* prop;
if ((prop = root->property ("version")) == 0) {
return -1;
}
const XMLNodeList& children (root->children());
XMLNodeConstIterator citer;
MIDIControllable* mc;
drop_all ();
DEBUG_TRACE (DEBUG::GenericMidi, "Loading bindings\n");
for (citer = children.begin(); citer != children.end(); ++citer) {
if ((*citer)->name() == "DeviceInfo") {
if ((*citer)->get_property ("bank-size", _bank_size)) {
_current_bank = 0;
}
if (!(*citer)->get_property ("motorized", _motorised)) {
_motorised = false;
}
if (!(*citer)->get_property ("threshold", _threshold)) {
_threshold = 10;
}
}
if ((*citer)->name() == "Binding") {
const XMLNode* child = *citer;
if (child->property ("uri")) {
/* controllable */
Glib::Threads::Mutex::Lock lm2 (controllables_lock);
if ((mc = create_binding (*child)) != 0) {
controllables.push_back (mc);
}
} else if (child->property ("function")) {
/* function */
MIDIFunction* mf;
if ((mf = create_function (*child)) != 0) {
functions.push_back (mf);
}
} else if (child->property ("action")) {
MIDIAction* ma;
if ((ma = create_action (*child)) != 0) {
actions.push_back (ma);
}
}
}
}
if ((prop = root->property ("name")) != 0) {
_current_binding = prop->value ();
}
reset_controllables ();
return 0;
}
MIDIControllable*
GenericMidiControlProtocol::create_binding (const XMLNode& node)
{
const XMLProperty* prop;
MIDI::byte detail;
MIDI::channel_t channel;
string uri;
MIDI::eventType ev;
int intval;
bool momentary;
MIDIControllable::CtlType ctltype;
MIDIControllable::Encoder encoder = MIDIControllable::No_enc;
bool rpn_value = false;
bool nrpn_value = false;
bool rpn_change = false;
bool nrpn_change = false;
if ((prop = node.property (X_("ctl"))) != 0) {
ctltype = MIDIControllable::Ctl_Momentary;
ev = MIDI::controller;
} else if ((prop = node.property (X_("ctl-toggle"))) !=0) {
ctltype = MIDIControllable::Ctl_Toggle;
ev = MIDI::controller;
} else if ((prop = node.property (X_("ctl-dial"))) !=0) {
ctltype = MIDIControllable::Ctl_Dial;
ev = MIDI::controller;
} else if ((prop = node.property (X_("note"))) != 0) {
ev = MIDI::on;
} else if ((prop = node.property (X_("pgm"))) != 0) {
ev = MIDI::program;
} else if ((prop = node.property (X_("pb"))) != 0) {
ev = MIDI::pitchbend;
} else if ((prop = node.property (X_("enc-l"))) != 0) {
encoder = MIDIControllable::Enc_L;
ev = MIDI::controller;
} else if ((prop = node.property (X_("enc-r"))) != 0) {
encoder = MIDIControllable::Enc_R;
ev = MIDI::controller;
} else if ((prop = node.property (X_("enc-2"))) != 0) {
encoder = MIDIControllable::Enc_2;
ev = MIDI::controller;
} else if ((prop = node.property (X_("enc-b"))) != 0) {
encoder = MIDIControllable::Enc_B;
ev = MIDI::controller;
} else if ((prop = node.property (X_("rpn"))) != 0) {
rpn_value = true;
} else if ((prop = node.property (X_("nrpn"))) != 0) {
nrpn_value = true;
} else if ((prop = node.property (X_("rpn-delta"))) != 0) {
rpn_change = true;
} else if ((prop = node.property (X_("nrpn-delta"))) != 0) {
nrpn_change = true;
} else {
return 0;
}
if (sscanf (prop->value().c_str(), "%d", &intval) != 1) {
return 0;
}
detail = (MIDI::byte) intval;
if ((prop = node.property (X_("channel"))) == 0) {
return 0;
}
if (sscanf (prop->value().c_str(), "%d", &intval) != 1) {
return 0;
}
channel = (MIDI::channel_t) intval;
/* adjust channel to zero-based counting */
if (channel > 0) {
channel -= 1;
}
if ((prop = node.property (X_("momentary"))) != 0) {
momentary = string_to<bool> (prop->value());
} else {
momentary = false;
}
prop = node.property (X_("uri"));
uri = prop->value();
MIDIControllable* mc = new MIDIControllable (this, *_input_port->parser(), momentary);
if (mc->init (uri)) {
delete mc;
return 0;
}
if (rpn_value) {
mc->bind_rpn_value (channel, detail);
} else if (nrpn_value) {
mc->bind_nrpn_value (channel, detail);
} else if (rpn_change) {
mc->bind_rpn_change (channel, detail);
} else if (nrpn_change) {
mc->bind_nrpn_change (channel, detail);
} else {
mc->set_ctltype (ctltype);
mc->set_encoder (encoder);
mc->bind_midi (channel, ev, detail);
}
return mc;
}
void
GenericMidiControlProtocol::reset_controllables ()
{
Glib::Threads::Mutex::Lock lm2 (controllables_lock);
for (MIDIControllables::iterator iter = controllables.begin(); iter != controllables.end(); ) {
MIDIControllable* existingBinding = (*iter);
MIDIControllables::iterator next = iter;
++next;
if (!existingBinding->learned()) {
/* its entirely possible that the session doesn't have
* the specified controllable (e.g. it has too few
* tracks). if we find this to be the case, we just leave
* the binding around, unbound, and it will do "late
* binding" (or "lazy binding") if/when any data arrives.
*/
existingBinding->lookup_controllable ();
}
iter = next;
}
}
std::shared_ptr<Controllable>
GenericMidiControlProtocol::lookup_controllable (const string & str) const
{
std::shared_ptr<Controllable> c;
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("lookup controllable from \"%1\"\n", str));
if (!session) {
DEBUG_TRACE (DEBUG::GenericMidi, "no session\n");
return c;
}
/* step 1: split string apart */
string::size_type first_space = str.find_first_of (" ");
if (first_space == string::npos) {
return c;
}
string front = str.substr (0, first_space);
vector<string> path;
split (front, path, '/');
if (path.size() < 2) {
return c;
}
string back = str.substr (first_space);
vector<string> rest;
split (back, rest, ' ');
if (rest.empty()) {
return c;
}
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("parsed into path of %1, rest of %1\n", path.size(), rest.size()));
/* Step 2: analyse parts of the string to figure out what type of
* Stripable we're looking for
*/
enum Type {
Selection,
PresentationOrder,
Named,
};
Type type = Named;
int id = 1;
string name;
static regex_t compiled_pattern;
static bool compiled = false;
if (!compiled) {
const char * const pattern = "^[BS]?[0-9]+";
/* this pattern compilation is not going to fail */
regcomp (&compiled_pattern, pattern, REG_EXTENDED|REG_NOSUB);
/* leak compiled pattern */
compiled = true;
}
/* Step 3: identify what "rest" looks like - name, or simple nueric, or
* banked/selection specifier
*/
bool matched = (regexec (&compiled_pattern, rest[0].c_str(), 0, 0, 0) == 0);
if (matched) {
bool banked = false;
if (rest[0][0] == 'B') {
banked = true;
/* already matched digits, so we know atoi() will succeed */
id = atoi (rest[0].substr (1));
type = PresentationOrder;
} else if (rest[0][0] == 'S') {
/* already matched digits, so we know atoi() will succeed */
id = atoi (rest[0].substr (1));
type = Selection;
} else if (isdigit (rest[0][0])) {
/* already matched digits, so we know atoi() will succeed */
id = atoi (rest[0]);
type = PresentationOrder;
} else {
return c;
}
id -= 1; /* order is zero-based, but maps use 1-based */
if (banked) {
id += _current_bank * _bank_size;
}
} else {
type = Named;
name = rest[0];
}
/* step 4: find the reference Stripable */
std::shared_ptr<Stripable> s;
if (path[0] == X_("route") || path[0] == X_("rid")) {
std::string name;
switch (type) {
case PresentationOrder:
s = session->get_remote_nth_stripable (id, PresentationInfo::Route);
break;
case Named:
/* name */
name = rest[0];
if (name == "Master" || name == X_("master")) {
s = session->master_out();
} else if (name == X_("control") || name == X_("listen") || name == X_("monitor") || name == "Monitor") {
s = session->monitor_out();
} else if (name == X_("auditioner")) {
s = session->the_auditioner();
} else {
s = session->route_by_name (name);
}
break;
case Selection:
s = session->route_by_selected_count (id);
break;
}
} else if (path[0] == X_("vca")) {
s = session->get_remote_nth_stripable (id, PresentationInfo::VCA);
} else if (path[0] == X_("bus")) {
switch (type) {
case Named:
name = rest[0];
if (name == "Master" || name == X_("master")) {
s = session->master_out();
} else if (name == X_("control") || name == X_("listen") || name == X_("monitor") || name == "Monitor") {
s = session->monitor_out();
} else if (name == X_("auditioner")) {
s = session->the_auditioner();
} else {
s = session->route_by_name (name);
}
break;
default:
s = session->get_remote_nth_stripable (id, PresentationInfo::Bus);
}
} else if (path[0] == X_("track")) {
switch (type) {
case Named:
s = session->route_by_name (name);
break;
default:
s = session->get_remote_nth_stripable (id, PresentationInfo::Track);
}
}
if (!s) {
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("no stripable found for \"%1\"\n", str));
return c;
}
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("found stripable %1\n", s->name()));
/* step 5: find the referenced controllable for that stripable.
*
* Some controls exist only for Route, so we need that too
*/
std::shared_ptr<Route> r = std::dynamic_pointer_cast<Route> (s);
if (path[1] == X_("gain")) {
c = s->gain_control();
} else if (path[1] == X_("trim")) {
c = s->trim_control ();
} else if (path[1] == X_("solo")) {
c = s->solo_control();
} else if (path[1] == X_("mute")) {
c = s->mute_control();
} else if (path[1] == X_("recenable")) {
c = s->rec_enable_control ();
} else if (path[1] == X_("panwidth")) {
c = s->pan_width_control ();
} else if (path[1] == X_("pandirection") || path[1] == X_("balance")) {
c = s->pan_azimuth_control ();
} else if (path[1] == X_("plugin")) {
/* /route/plugin/parameter */
if (path.size() == 3 && rest.size() == 3) {
if (path[2] == X_("parameter")) {
int plugin = atoi (rest[1]);
int parameter_index = atoi (rest[2]);
/* revert to zero based counting */
if (plugin > 0) {
--plugin;
}
if (parameter_index > 0) {
--parameter_index;
}
if (r) {
std::shared_ptr<Processor> proc = r->nth_plugin (plugin);
if (proc) {
std::shared_ptr<PluginInsert> p = std::dynamic_pointer_cast<PluginInsert> (proc);
if (p) {
uint32_t param;
bool ok;
param = p->plugin()->nth_parameter (parameter_index, ok);
if (ok) {
c = std::dynamic_pointer_cast<Controllable> (proc->control (Evoral::Parameter (PluginAutomation, 0, param)));
}
}
}
}
}
}
} else if (path[1] == X_("send")) {
if (path.size() == 3 && rest.size() == 2) {
if (path[2] == X_("gain")) {
uint32_t send = atoi (rest[1]);
if (send > 0) {
--send;
}
c = s->send_level_controllable (send);
} else if (path[2] == X_("direction")) {
/* XXX not implemented yet */
} else if (path[2] == X_("enable")) {
/* XXX not implemented yet */
}
}
} else if (path[1] == X_("eq")) {
/* /route/eq/enable */
/* /route/eq/gain/<band> */
/* /route/eq/freq/<band> */
/* /route/eq/q/<band> */
/* /route/eq/shape/<band> */
if (path.size() == 3) {
if (path[2] == X_("enable")) {
c = s->eq_enable_controllable ();
}
} else if (path.size() == 4) {
int band = atoi (path[3]); /* band number */
if (path[2] == X_("gain")) {
c = s->eq_gain_controllable (band);
} else if (path[2] == X_("freq")) {
c = s->eq_freq_controllable (band);
} else if (path[2] == X_("q")) {
c = s->eq_q_controllable (band);
} else if (path[2] == X_("shape")) {
c = s->eq_shape_controllable (band);
}
}
} else if (path[1] == X_("filter")) {
/* /route/filter/hi/freq */
if (path.size() == 4) {
int filter;
if (path[2] == X_("hi")) {
filter = 1; /* high pass filter */
} else {
filter = 0; /* low pass filter */
}
if (path[3] == X_("enable")) {
c = s->filter_enable_controllable (filter);
} else if (path[3] == X_("freq")) {
c = s->filter_freq_controllable (filter);
} else if (path[3] == X_("slope")) {
c = s->filter_slope_controllable (filter);
}
}
}
else if (path[1] == X_("compressor"))
{
if (path.size() == 3)
{
if (path[2] == X_("enable"))
{
c = s->comp_enable_controllable();
}
else if (path[2] == X_("threshold"))
{
c = s->comp_threshold_controllable();
}
else if (path[2] == X_("mode"))
{
c = s->comp_mode_controllable();
}
else if (path[2] == X_("speed"))
{
c = s->comp_speed_controllable();
}
else if (path[2] == X_("attack"))
{
c = s->comp_attack_controllable();
}
else if (path[2] == X_("release"))
{
c = s->comp_release_controllable();
}
else if (path[2] == X_("makeup"))
{
c = s->comp_makeup_controllable();
}
else if (path[2] == X_("ratio"))
{
c = s->comp_ratio_controllable();
}
else if (path[2] == X_("key_filter_freq"))
{
c = s->comp_key_filter_freq_controllable();
}
}
}
else if (path[1] == X_("gate"))
{
if (path.size() == 3)
{
if (path[2] == X_("enable"))
{
c = s->gate_enable_controllable();
}
else if (path[2] == X_("threshold"))
{
c = s->gate_threshold_controllable();
}
else if (path[2] == X_("mode"))
{
c = s->gate_mode_controllable();
}
else if (path[2] == X_("ratio"))
{
c = s->gate_ratio_controllable();
}
else if (path[2] == X_("knee"))
{
c = s->gate_knee_controllable();
}
else if (path[2] == X_("depth"))
{
c = s->gate_depth_controllable();
}
else if (path[2] == X_("hysteresis"))
{
c = s->gate_hysteresis_controllable();
}
else if (path[2] == X_("hold"))
{
c = s->gate_hold_controllable();
}
else if (path[2] == X_("attack"))
{
c = s->gate_attack_controllable();
}
else if (path[2] == X_("release"))
{
c = s->gate_release_controllable();
}
else if (path[2] == X_("key_listen"))
{
c = s->gate_key_listen_controllable();
}
else if (path[2] == X_("key_filter_enable"))
{
c = s->gate_key_filter_enable_controllable();
}
else if (path[2] == X_("key_filter_freq"))
{
c = s->gate_key_filter_freq_controllable();
}
}
}
else if (path[1] == X_("tape"))
{
if (path.size() == 3)
{
if (path[2] == X_("drive"))
{
c = s->tape_drive_controllable();
}
else if (path[2] == X_("mode"))
{
c = s->tape_drive_mode_controllable();
}
}
}
if (c) {
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("found controllable \"%1\"\n", c->name()));
} else {
DEBUG_TRACE (DEBUG::GenericMidi, "no controllable found\n");
}
return c;
}
MIDIFunction*
GenericMidiControlProtocol::create_function (const XMLNode& node)
{
const XMLProperty* prop;
int intval;
MIDI::byte detail = 0;
MIDI::channel_t channel = 0;
string uri;
MIDI::eventType ev;
MIDI::byte* data = 0;
uint32_t data_size = 0;
string argument;
if ((prop = node.property (X_("ctl"))) != 0) {
ev = MIDI::controller;
} else if ((prop = node.property (X_("note"))) != 0) {
ev = MIDI::on;
} else if ((prop = node.property (X_("pgm"))) != 0) {
ev = MIDI::program;
} else if ((prop = node.property (X_("sysex"))) != 0 || (prop = node.property (X_("msg"))) != 0) {
if (prop->name() == X_("sysex")) {
ev = MIDI::sysex;
} else {
ev = MIDI::any;
}
int val;
uint32_t cnt;
{
cnt = 0;
stringstream ss (prop->value());
ss << hex;
while (ss >> val) {
cnt++;
}
}
if (cnt == 0) {
return 0;
}
data = new MIDI::byte[cnt];
data_size = cnt;
{
stringstream ss (prop->value());
ss << hex;
cnt = 0;
while (ss >> val) {
data[cnt++] = (MIDI::byte) val;
}
}
} else {
warning << "Binding ignored - unknown type" << endmsg;
return 0;
}
if (data_size == 0) {
if (sscanf (prop->value().c_str(), "%d", &intval) != 1) {
return 0;
}
detail = (MIDI::byte) intval;
if ((prop = node.property (X_("channel"))) == 0) {
return 0;
}
if (sscanf (prop->value().c_str(), "%d", &intval) != 1) {
return 0;
}
channel = (MIDI::channel_t) intval;
/* adjust channel to zero-based counting */
if (channel > 0) {
channel -= 1;
}
}
if ((prop = node.property (X_("arg"))) != 0 || (prop = node.property (X_("argument"))) != 0 || (prop = node.property (X_("arguments"))) != 0) {
argument = prop->value ();
}
prop = node.property (X_("function"));
MIDIFunction* mf = new MIDIFunction (*_input_port->parser());
if (mf->setup (*this, prop->value(), argument, data, data_size)) {
delete mf;
return 0;
}
mf->bind_midi (channel, ev, detail);
return mf;
}
MIDIAction*
GenericMidiControlProtocol::create_action (const XMLNode& node)
{
const XMLProperty* prop;
int intval;
MIDI::byte detail = 0;
MIDI::channel_t channel = 0;
string uri;
MIDI::eventType ev;
MIDI::byte* data = 0;
uint32_t data_size = 0;
if ((prop = node.property (X_("ctl"))) != 0) {
ev = MIDI::controller;
} else if ((prop = node.property (X_("note"))) != 0) {
ev = MIDI::on;
} else if ((prop = node.property (X_("pgm"))) != 0) {
ev = MIDI::program;
} else if ((prop = node.property (X_("sysex"))) != 0 || (prop = node.property (X_("msg"))) != 0) {
if (prop->name() == X_("sysex")) {
ev = MIDI::sysex;
} else {
ev = MIDI::any;
}
int val;
uint32_t cnt;
{
cnt = 0;
stringstream ss (prop->value());
ss << hex;
while (ss >> val) {
cnt++;
}
}
if (cnt == 0) {
return 0;
}
data = new MIDI::byte[cnt];
data_size = cnt;
{
stringstream ss (prop->value());
ss << hex;
cnt = 0;
while (ss >> val) {
data[cnt++] = (MIDI::byte) val;
}
}
} else {
warning << "Binding ignored - unknown type" << endmsg;
return 0;
}
if (data_size == 0) {
if (sscanf (prop->value().c_str(), "%d", &intval) != 1) {
return 0;
}
detail = (MIDI::byte) intval;
if ((prop = node.property (X_("channel"))) == 0) {
return 0;
}
if (sscanf (prop->value().c_str(), "%d", &intval) != 1) {
return 0;
}
channel = (MIDI::channel_t) intval;
/* adjust channel to zero-based counting */
if (channel > 0) {
channel -= 1;
}
}
prop = node.property (X_("action"));
MIDIAction* ma = new MIDIAction (*_input_port->parser());
if (ma->init (*this, prop->value(), data, data_size)) {
delete ma;
return 0;
}
ma->bind_midi (channel, ev, detail);
return ma;
}
void
GenericMidiControlProtocol::set_current_bank (uint32_t b)
{
_current_bank = b;
reset_controllables ();
}
void
GenericMidiControlProtocol::next_bank ()
{
_current_bank++;
reset_controllables ();
}
void
GenericMidiControlProtocol::prev_bank()
{
if (_current_bank) {
_current_bank--;
reset_controllables ();
}
}
void
GenericMidiControlProtocol::set_motorised (bool m)
{
_motorised = m;
}
void
GenericMidiControlProtocol::set_threshold (int t)
{
_threshold = t;
}
bool
GenericMidiControlProtocol::connection_handler (std::weak_ptr<ARDOUR::Port>, std::string name1, std::weak_ptr<ARDOUR::Port>, std::string name2, bool yn)
{
bool input_was_connected = (connection_state & InputConnected);
if (!_input_port || !_output_port) {
return false;
}
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("connection change: %1 and %2 connected ? %3\n", name1, name2, yn));
string ni = ARDOUR::AudioEngine::instance()->make_port_name_non_relative (std::shared_ptr<ARDOUR::Port>(_input_port)->name());
string no = ARDOUR::AudioEngine::instance()->make_port_name_non_relative (std::shared_ptr<ARDOUR::Port>(_output_port)->name());
if (ni == name1 || ni == name2) {
if (yn) {
connection_state |= InputConnected;
} else {
connection_state &= ~InputConnected;
}
} else if (no == name1 || no == name2) {
if (yn) {
connection_state |= OutputConnected;
} else {
connection_state &= ~OutputConnected;
}
} else {
/* not our ports */
return false;
}
if (connection_state & InputConnected) {
if (!input_was_connected) {
start_midi_handling ();
}
} else {
if (input_was_connected) {
stop_midi_handling ();
}
}
ConnectionChange (); /* emit signal for our GUI */
return true; /* connection status changed */
}
std::shared_ptr<Port>
GenericMidiControlProtocol::output_port() const
{
return _output_port;
}
std::shared_ptr<Port>
GenericMidiControlProtocol::input_port() const
{
return _input_port;
}
void
GenericMidiControlProtocol::maybe_start_touch (std::shared_ptr<Controllable> controllable)
{
std::shared_ptr<AutomationControl> actl = std::dynamic_pointer_cast<AutomationControl> (controllable);
if (actl) {
actl->start_touch (timepos_t (session->audible_sample ()));
}
}
void
GenericMidiControlProtocol::start_midi_handling ()
{
/* This connection means that whenever data is ready from the input
* port, the relevant thread will invoke our ::midi_input_handler()
* method, which will read the data, and invoke the parser.
*/
_input_port->xthread().set_receive_handler (sigc::bind (sigc::mem_fun (this, &GenericMidiControlProtocol::midi_input_handler), std::weak_ptr<AsyncMIDIPort> (_input_port)));
_input_port->xthread().attach (main_loop()->get_context());
}
void
GenericMidiControlProtocol::stop_midi_handling ()
{
midi_connections.drop_connections ();
/* Note: the input handler is still active at this point, but we're no
* longer connected to any of the parser signals
*/
}
bool
GenericMidiControlProtocol::midi_input_handler (Glib::IOCondition ioc, std::weak_ptr<ARDOUR::AsyncMIDIPort> wport)
{
std::shared_ptr<AsyncMIDIPort> port (wport.lock());
if (!port) {
return false;
}
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("something happened on %1\n", std::shared_ptr<MIDI::Port>(port)->name()));
if (ioc & ~IO_IN) {
return false;
}
if (ioc & IO_IN) {
port->clear ();
DEBUG_TRACE (DEBUG::GenericMidi, string_compose ("data available on %1\n", std::shared_ptr<MIDI::Port>(port)->name()));
samplepos_t now = session->engine().sample_time();
port->parse (now);
}
return true;
}
void
GenericMidiControlProtocol::add_rid_to_selection (int rid)
{
int id = rid + (_current_bank * _bank_size);
ControlProtocol::add_rid_to_selection (id);
}
void
GenericMidiControlProtocol::set_rid_selection (int rid)
{
int id = rid + (_current_bank * _bank_size);
ControlProtocol::set_rid_selection (id);
}
void
GenericMidiControlProtocol::toggle_rid_selection (int rid)
{
int id = rid + (_current_bank * _bank_size);
ControlProtocol::toggle_rid_selection (id);
}
void
GenericMidiControlProtocol::remove_rid_from_selection (int rid)
{
int id = rid + (_current_bank * _bank_size);
ControlProtocol::remove_rid_from_selection (id);
}