ardour/gtk2_ardour/fft_graph.cc

667 lines
16 KiB
C++

/*
* Copyright (C) 2006-2009 David Robillard <d@drobilla.net>
* Copyright (C) 2006-2017 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2006 Sampo Savolainen <v2@iki.fi>
* Copyright (C) 2016-2017 Robin Gareus <robin@gareus.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <iostream>
#include <glibmm.h>
#include <glibmm/refptr.h>
#include <gdkmm/gc.h>
#include <gtkmm/widget.h>
#include <gtkmm/style.h>
#include <gtkmm/treemodel.h>
#include <gtkmm/treepath.h>
#include "pbd/stl_delete.h"
#include <math.h>
#include "fft_graph.h"
#include "analysis_window.h"
#include "public_editor.h"
#include "pbd/i18n.h"
using namespace std;
using namespace Gtk;
using namespace Gdk;
FFTGraph::FFTGraph (int windowSize)
{
_logScale = 0;
_in = 0;
_out = 0;
_hanning = 0;
_logScale = 0;
_surface = 0;
_a_window = 0;
_show_minmax = false;
_show_normalized = false;
_show_proportional = false;
_ann_x = _ann_y = -1;
_yoff = v_margin;
_ann_area.width = 0;
_ann_area.height = 0;
setWindowSize (windowSize);
set_events (Gdk::POINTER_MOTION_MASK | Gdk::LEAVE_NOTIFY_MASK | Gdk::BUTTON_PRESS_MASK);
}
void
FFTGraph::setWindowSize (int windowSize)
{
if (_a_window) {
Glib::Threads::Mutex::Lock lm (_a_window->track_list_lock);
setWindowSize_internal (windowSize);
} else {
setWindowSize_internal (windowSize);
}
}
void
FFTGraph::setWindowSize_internal (int windowSize)
{
// remove old tracklist & graphs
if (_a_window) {
_a_window->clear_tracklist ();
}
_windowSize = windowSize;
_dataSize = windowSize / 2;
if (_in != 0) {
fftwf_destroy_plan (_plan);
free (_in);
_in = 0;
}
if (_out != 0) {
free (_out);
_out = 0;
}
if (_hanning != 0) {
free (_hanning);
_hanning = 0;
}
if (_logScale != 0) {
free (_logScale);
_logScale = 0;
}
// When destroying, window size is set to zero to free up memory
if (windowSize == 0) {
return;
}
// FFT input & output buffers
_in = (float *) fftwf_malloc (sizeof (float) * _windowSize);
_out = (float *) fftwf_malloc (sizeof (float) * _windowSize);
// Hanning window
_hanning = (float *) malloc (sizeof (float) * _windowSize);
// normalize the window
double sum = 0.0;
for (unsigned int i = 0; i < _windowSize; ++i) {
_hanning[i] = 0.5f - (0.5f * (float) cos (2.0f * M_PI * (float)i / (float)(_windowSize)));
sum += _hanning[i];
}
double isum = 2.0 / sum;
for (unsigned int i = 0; i < _windowSize; i++) {
_hanning[i] *= isum;
}
_logScale = (int *) malloc (sizeof (int) * _dataSize);
for (unsigned int i = 0; i < _dataSize; i++) {
_logScale[i] = 0;
}
_plan = fftwf_plan_r2r_1d (_windowSize, _in, _out, FFTW_R2HC, FFTW_MEASURE);
}
FFTGraph::~FFTGraph ()
{
// This will free everything
setWindowSize (0);
if (_surface) {
cairo_surface_destroy (_surface);
}
}
bool
FFTGraph::on_expose_event (GdkEventExpose* event)
{
cairo_t* cr = gdk_cairo_create (GDK_DRAWABLE (get_window ()->gobj ()));
cairo_rectangle (cr, event->area.x, event->area.y, event->area.width, event->area.height);
cairo_clip (cr);
cairo_set_source_surface(cr, _surface, 0, 0);
cairo_paint (cr);
if (_ann_x > 0 && _ann_y > 0) {
const float x = _ann_x - hl_margin;
const float freq = expf(_fft_log_base * x / currentScaleWidth) * _fft_start;
std::stringstream ss;
if (freq >= 10000) {
ss << std::setprecision (1) << std::fixed << freq / 1000 << " kHz";
} else if (freq >= 1000) {
ss << std::setprecision (2) << std::fixed << freq / 1000 << " kHz";
} else {
ss << std::setprecision (0) << std::fixed << freq << " Hz";
}
layout->set_text (ss.str ());
int lw, lh;
layout->get_pixel_size (lw, lh);
lw|=1; lh|=1;
const float y0 = _ann_y - lh - 7;
_ann_area.x = _ann_x - 1 - lw * .5;
_ann_area.y = y0 - 1;
_ann_area.width = lw + 3;
_ann_area.height = lh + 8;
cairo_set_source_rgba (cr, 1.0, 1.0, 1.0, 0.7);
cairo_rectangle (cr, _ann_x - 1 - lw * .5, y0 - 1, lw + 2, lh + 2);
cairo_fill (cr);
cairo_move_to (cr, _ann_x , _ann_y - 0.5);
cairo_rel_line_to (cr, -3.0, -5.5);
cairo_rel_line_to (cr, 6, 0);
cairo_close_path (cr);
cairo_fill (cr);
cairo_set_source_rgba (cr, 0.0, 0.0, 0.0, 1.0);
cairo_move_to (cr, _ann_x - lw / 2, y0);
pango_cairo_update_layout (cr, layout->gobj ());
pango_cairo_show_layout (cr, layout->gobj ());
}
#ifdef HARLEQUIN_DEBUGGING
cairo_rectangle (cr, 0, 0, width, height);
cairo_set_source_rgba (cr, (random() % 255) / 255.f, (random() % 255) / 255.f, 0.0, 0.5);
cairo_fill (cr);
#endif
cairo_destroy (cr);
return true;
}
bool
FFTGraph::on_motion_notify_event (GdkEventMotion* ev)
{
gint x, y;
x = (int) floor (ev->x);
y = (int) floor (ev->y);
if (x <= hl_margin + 1 || x >= width - hr_margin) {
x = -1;
}
if (y <= _yoff || y >= height - v_margin - 1) {
y = -1;
}
if (x == _ann_x && y == _ann_y) {
return true;
}
_ann_x = x;
_ann_y = y;
if (_ann_area.width == 0 || _ann_area.height == 0) {
queue_draw ();
} else {
queue_draw_area (_ann_area.x, _ann_area.y, _ann_area.width, _ann_area.height + 1);
}
if (_ann_x > 0 &&_ann_y > 0) {
queue_draw_area (_ann_x - _ann_area.width, _ann_y - _ann_area.height - 1, _ann_area.width * 2, _ann_area.height + 2);
}
return true;
}
bool
FFTGraph::on_leave_notify_event (GdkEventCrossing *)
{
if (_ann_x == -1 && _ann_y == -1) {
return true;
}
_ann_x = _ann_y = -1;
if (_ann_area.width == 0 || _ann_area.height == 0) {
queue_draw ();
} else {
queue_draw_area (_ann_area.x, _ann_area.y, _ann_area.width, _ann_area.height + 1);
}
_ann_area.width = _ann_area.height = 0;
return false;
}
FFTResult *
FFTGraph::prepareResult (Gdk::Color color, string trackname)
{
FFTResult *res = new FFTResult (this, color, trackname);
return res;
}
void
FFTGraph::set_analysis_window (AnalysisWindow *a_window)
{
_a_window = a_window;
}
int
FFTGraph::draw_scales (cairo_t* cr)
{
int label_height = v_margin;
cairo_set_source_rgba (cr, 0.0, 0.0, 0.0, 1.0);
cairo_rectangle (cr, 0, 0, width, height);
cairo_fill (cr);
/*
* 1 5
* _ _
* | |
* 2 | | 4
* |________|
* 3
*/
cairo_set_line_width (cr, 1.0);
cairo_set_source_rgba (cr, 1.0, 1.0, 1.0, 1.0);
cairo_move_to (cr, 3 , .5 + v_margin);
cairo_line_to (cr, .5 + hl_margin , .5 + v_margin); // 1
cairo_line_to (cr, .5 + hl_margin , .5 + height - v_margin); // 2
cairo_line_to (cr, 1.5 + width - hr_margin, .5 + height - v_margin); // 3
cairo_line_to (cr, 1.5 + width - hr_margin, .5 + v_margin); // 4
cairo_line_to (cr, width - 3 , .5 + v_margin); // 5
cairo_stroke (cr);
if (! layout) {
layout = create_pango_layout ("");
layout->set_font_description (get_style ()->get_font ());
}
// Draw x-axis scale 1/3 octaves centered around 1K
int overlap = 0;
// make sure 1K (x=0) is visible
for (int x = 0; x < 27; ++x) {
float freq = powf (2.f, x / 3.0) * 1000.f;
if (freq <= _fft_start) { continue; }
if (freq >= _fft_end) { break; }
const float pos = currentScaleWidth * logf (freq / _fft_start) / _fft_log_base;
const int coord = floor (hl_margin + pos);
if (coord < overlap) {
continue;
}
std::stringstream ss;
if (freq >= 10000) {
ss << std::setprecision (1) << std::fixed << freq / 1000 << "k";
} else if (freq >= 1000) {
ss << std::setprecision (2) << std::fixed << freq / 1000 << "k";
} else {
ss << std::setprecision (0) << std::fixed << freq << "Hz";
}
layout->set_text (ss.str ());
int lw, lh;
layout->get_pixel_size (lw, lh);
overlap = coord + lw + 3;
if (coord + lw / 2 > width - hr_margin - 2) {
break;
}
if (v_margin / 2 + lh > label_height) {
label_height = v_margin / 2 + lh;
}
cairo_set_source_rgba (cr, 0.2, 0.2, 0.2, 1.0);
cairo_move_to (cr, coord, v_margin);
cairo_line_to (cr, coord, height - v_margin - 1);
cairo_stroke (cr);
cairo_set_source_rgba (cr, 1.0, 1.0, 1.0, 1.0);
cairo_move_to (cr, coord - lw / 2, v_margin / 2);
pango_cairo_update_layout (cr, layout->gobj ());
pango_cairo_show_layout (cr, layout->gobj ());
}
// now from 1K down to 4Hz
for (int x = 0; x > -24; --x) {
float freq = powf (2.f, x / 3.0) * 1000.f;
if (freq >= _fft_end) { continue; }
if (freq <= _fft_start) { break; }
const float pos = currentScaleWidth * logf (freq / _fft_start) / _fft_log_base;
const int coord = floor (hl_margin + pos);
if (x != 0 && coord > overlap) {
continue;
}
std::stringstream ss;
if (freq >= 10000) {
ss << std::setprecision (1) << std::fixed << freq / 1000 << "k";
} else if (freq >= 1000) {
ss << std::setprecision (2) << std::fixed << freq / 1000 << "k";
} else {
ss << std::setprecision (0) << std::fixed << freq << "Hz";
}
layout->set_text (ss.str ());
int lw, lh;
layout->get_pixel_size (lw, lh);
overlap = coord - lw - 3;
if (coord - lw / 2 < hl_margin + 2) {
break;
}
if (x == 0) {
// just get overlap position
continue;
}
if (v_margin / 2 + lh > label_height) {
label_height = v_margin / 2 + lh;
}
cairo_set_source_rgba (cr, 0.2, 0.2, 0.2, 1.0);
cairo_move_to (cr, coord, v_margin);
cairo_line_to (cr, coord, height - v_margin - 1);
cairo_stroke (cr);
cairo_set_source_rgba (cr, 1.0, 1.0, 1.0, 1.0);
cairo_move_to (cr, coord - lw / 2, v_margin / 2);
pango_cairo_update_layout (cr, layout->gobj ());
pango_cairo_show_layout (cr, layout->gobj ());
}
return label_height;
}
void
FFTGraph::redraw ()
{
assert (_surface);
cairo_t* cr = cairo_create (_surface);
_yoff = draw_scales (cr);
if (_a_window == 0) {
cairo_destroy (cr);
queue_draw ();
return;
}
Glib::Threads::Mutex::Lock lm (_a_window->track_list_lock);
if (!_a_window->track_list_ready) {
cairo_destroy (cr);
queue_draw ();
return;
}
float minf;
float maxf;
TreeNodeChildren track_rows = _a_window->track_list.get_model ()->children ();
if (!_show_normalized) {
maxf = 0.0f;
minf = -108.0f;
} else {
minf = 999.0f;
maxf = -999.0f;
for (TreeIter i = track_rows.begin (); i != track_rows.end (); i++) {
TreeModel::Row row = *i;
FFTResult *res = row[_a_window->tlcols.graph];
// disregard fft analysis from empty signals
if (res->minimum (_show_proportional) == res->maximum (_show_proportional)) {
continue;
}
// don't include invisible graphs
if (!row[_a_window->tlcols.visible]) {
continue;
}
minf = std::min (minf, res->minimum (_show_proportional));
maxf = std::max (maxf, res->maximum (_show_proportional));
}
}
// clamp range, > -200dBFS, at least 24dB (two y-axis labels) range
minf = std::max (-200.f, minf);
if (maxf <= minf) {
cairo_destroy (cr);
queue_draw ();
return;
}
if (maxf - minf < 24) {
maxf += 6.f;
minf = maxf - 24.f;
}
cairo_set_line_width (cr, 1.5);
cairo_translate (cr, hl_margin + 1, _yoff);
float fft_pane_size_w = width - hl_margin - hr_margin;
float fft_pane_size_h = height - v_margin - 1 - _yoff;
double pixels_per_db = (double)fft_pane_size_h / (double)(maxf - minf);
// draw y-axis dB
cairo_set_source_rgba (cr, .8, .8, .8, 1.0);
int btm_lbl = fft_pane_size_h;
{
// y-axis legend
layout->set_text (_("dBFS"));
int lw, lh;
layout->get_pixel_size (lw, lh);
cairo_move_to (cr, -2 - lw, fft_pane_size_h - lh / 2);
pango_cairo_update_layout (cr, layout->gobj ());
pango_cairo_show_layout (cr, layout->gobj ());
btm_lbl = fft_pane_size_h - lh;
}
for (int x = -6; x >= -200; x -= 12) {
float yp = 1.5 + fft_pane_size_h - rint ((x - minf) * pixels_per_db);
assert (layout);
std::stringstream ss;
ss << x;
layout->set_text (ss.str ());
int lw, lh;
layout->get_pixel_size (lw, lh);
if (yp + 2 + lh / 2 > btm_lbl) {
continue;
}
if (yp < 2 + lh / 2) {
continue;
}
cairo_set_source_rgba (cr, .8, .8, .8, 1.0);
cairo_move_to (cr, -2 - lw, yp - lh / 2);
pango_cairo_update_layout (cr, layout->gobj ());
pango_cairo_show_layout (cr, layout->gobj ());
cairo_set_source_rgba (cr, .2, .2, .2, 1.0);
cairo_move_to (cr, 0, yp);
cairo_line_to (cr, fft_pane_size_w, yp);
cairo_stroke (cr);
}
cairo_rectangle (cr, 1, 1, fft_pane_size_w, fft_pane_size_h);
cairo_clip (cr);
cairo_set_line_cap (cr, CAIRO_LINE_CAP_BUTT);
cairo_set_line_join (cr, CAIRO_LINE_JOIN_ROUND);
for (TreeIter i = track_rows.begin (); i != track_rows.end (); i++) {
TreeModel::Row row = *i;
// don't show graphs for tracks which are deselected
if (!row[_a_window->tlcols.visible]) {
continue;
}
FFTResult *res = row[_a_window->tlcols.graph];
// don't show graphs for empty signals
if (res->minimum (_show_proportional) == res->maximum (_show_proportional)) {
continue;
}
float mpp;
float X,Y;
if (_show_minmax) {
X = 0.5f + _logScale[0];
Y = 1.5f + fft_pane_size_h - pixels_per_db * (res->maxAt (0, _show_proportional) - minf);
cairo_move_to (cr, X, Y);
// Draw the line of maximum values
mpp = minf;
for (unsigned int x = 1; x < res->length () - 1; ++x) {
mpp = std::max (mpp, res->maxAt (x, _show_proportional));
if (_logScale[x] == _logScale[x + 1]) {
continue;
}
mpp = fmin (mpp, maxf);
X = 0.5f + _logScale[x];
Y = 1.5f + fft_pane_size_h - pixels_per_db * (mpp - minf);
cairo_line_to (cr, X, Y);
mpp = minf;
}
mpp = maxf;
// Draw back to the start using the minimum value
for (int x = res->length () - 1; x >= 0; --x) {
mpp = std::min (mpp, res->minAt (x, _show_proportional));
if (_logScale[x] == _logScale[x + 1]) {
continue;
}
mpp = fmax (mpp, minf);
X = 0.5f + _logScale[x];
Y = 1.5f + fft_pane_size_h - pixels_per_db * (mpp - minf);
cairo_line_to (cr, X, Y);
mpp = maxf;
}
cairo_set_source_rgba (cr, res->get_color ().get_red_p (), res->get_color ().get_green_p (), res->get_color ().get_blue_p (), 0.30);
cairo_close_path (cr);
cairo_fill (cr);
}
// draw max of averages
X = 0.5f + _logScale[0];
Y = 1.5f + fft_pane_size_h - pixels_per_db * (res->avgAt (0, _show_proportional) - minf);
cairo_move_to (cr, X, Y);
mpp = minf;
for (unsigned int x = 0; x < res->length () - 1; x++) {
mpp = std::max (mpp, res->avgAt (x, _show_proportional));
if (_logScale[x] == _logScale[x + 1]) {
continue;
}
mpp = fmax (mpp, minf);
mpp = fmin (mpp, maxf);
X = 0.5f + _logScale[x];
Y = 1.5f + fft_pane_size_h - pixels_per_db * (mpp - minf);
cairo_line_to (cr, X, Y);
mpp = minf;
}
cairo_set_source_rgb (cr, res->get_color ().get_red_p (), res->get_color ().get_green_p (), res->get_color ().get_blue_p ());
cairo_stroke (cr);
}
cairo_destroy (cr);
queue_draw ();
}
void
FFTGraph::on_size_request (Gtk::Requisition* requisition)
{
width = max (requisition->width, minScaleWidth + hl_margin + hr_margin);
height = max (requisition->height, minScaleHeight + 2 + v_margin * 2);
requisition->width = width;;
requisition->height = height;
}
void
FFTGraph::on_size_allocate (Gtk::Allocation & alloc)
{
width = alloc.get_width ();
height = alloc.get_height ();
update_size ();
DrawingArea::on_size_allocate (alloc);
}
void
FFTGraph::update_size ()
{
samplecnt_t SR = PublicEditor::instance ().session ()->nominal_sample_rate ();
_fft_start = SR / (double)_dataSize;
_fft_end = .5 * SR;
_fft_log_base = logf (.5 * _dataSize);
currentScaleWidth = width - hl_margin - hr_margin;
_logScale[0] = 0;
for (unsigned int i = 1; i < _dataSize; ++i) {
_logScale[i] = floor (currentScaleWidth * logf (.5 * i) / _fft_log_base);
}
if (_surface) {
cairo_surface_destroy (_surface);
}
_surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, width, height);
redraw ();
}