ardour/libs/vamp-plugins/TruePeak.cpp

631 lines
10 KiB
C++

/*
* Copyright (C) 2006 Chris Cannam
* Copyright (C) 2006-2012 Fons Adriaensen <fons@linuxaudio.org>
* COPYRIGHT (C) 2012-2019 Robin Gareus <robin@gareus.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "TruePeak.h"
namespace TruePeakMeter {
static double sinc (double x)
{
x = fabs (x);
if (x < 1e-6) return 1.0;
x *= M_PI;
return sin (x) / x;
}
static double wind (double x)
{
x = fabs (x);
if (x >= 1.0) return 0.0f;
x *= M_PI;
return 0.384 + 0.500 * cos (x) + 0.116 * cos (2 * x);
}
Resampler_table *Resampler_table::_list = 0;
Resampler_mutex Resampler_table::_mutex;
Resampler_table::Resampler_table (double fr, unsigned int hl, unsigned int np)
: _next (0)
, _refc (0)
, _fr (fr)
, _hl (hl)
, _np (np)
{
unsigned int i, j;
double t;
float *p;
_ctab = new float [hl * (np + 1)];
p = _ctab;
for (j = 0; j <= np; j++)
{
t = (double) j / (double) np;
for (i = 0; i < hl; i++)
{
p [hl - i - 1] = (float)(fr * sinc (t * fr) * wind (t / hl));
t += 1;
}
p += hl;
}
}
Resampler_table::~Resampler_table (void)
{
delete[] _ctab;
}
Resampler_table *
Resampler_table::create (double fr, unsigned int hl, unsigned int np)
{
Resampler_table *P;
_mutex.lock ();
P = _list;
while (P)
{
if ((fr >= P->_fr * 0.999) && (fr <= P->_fr * 1.001) && (hl == P->_hl) && (np == P->_np))
{
P->_refc++;
_mutex.unlock ();
return P;
}
P = P->_next;
}
P = new Resampler_table (fr, hl, np);
P->_refc = 1;
P->_next = _list;
_list = P;
_mutex.unlock ();
return P;
}
void
Resampler_table::destroy (Resampler_table *T)
{
Resampler_table *P, *Q;
_mutex.lock ();
if (T)
{
T->_refc--;
if (T->_refc == 0)
{
P = _list;
Q = 0;
while (P)
{
if (P == T)
{
if (Q) Q->_next = T->_next;
else _list = T->_next;
break;
}
Q = P;
P = P->_next;
}
delete T;
}
}
_mutex.unlock ();
}
static unsigned int
gcd (unsigned int a, unsigned int b)
{
if (a == 0) return b;
if (b == 0) return a;
while (1)
{
if (a > b)
{
a = a % b;
if (a == 0) return b;
if (a == 1) return 1;
}
else
{
b = b % a;
if (b == 0) return a;
if (b == 1) return 1;
}
}
return 1;
}
Resampler::Resampler (void)
: _table (0)
, _nchan (0)
, _buff (0)
{
reset ();
}
Resampler::~Resampler (void)
{
clear ();
}
int
Resampler::setup (unsigned int fs_inp,
unsigned int fs_out,
unsigned int nchan,
unsigned int hlen)
{
if ((hlen < 8) || (hlen > 96)) return 1;
return setup (fs_inp, fs_out, nchan, hlen, 1.0 - 2.6 / hlen);
}
int
Resampler::setup (unsigned int fs_inp,
unsigned int fs_out,
unsigned int nchan,
unsigned int hlen,
double frel)
{
unsigned int g, h, k, n, s;
double r;
float *B = 0;
Resampler_table *T = 0;
k = s = 0;
if (fs_inp && fs_out && nchan)
{
r = (double) fs_out / (double) fs_inp;
g = gcd (fs_out, fs_inp);
n = fs_out / g;
s = fs_inp / g;
if ((16 * r >= 1) && (n <= 1000))
{
h = hlen;
k = 250;
if (r < 1)
{
frel *= r;
h = (unsigned int)(ceil (h / r));
k = (unsigned int)(ceil (k / r));
}
T = Resampler_table::create (frel, h, n);
B = new float [nchan * (2 * h - 1 + k)];
}
}
clear ();
if (T)
{
_table = T;
_buff = B;
_nchan = nchan;
_inmax = k;
_pstep = s;
return reset ();
} else {
delete[] B;
return 1;
}
}
void
Resampler::clear (void)
{
Resampler_table::destroy (_table);
delete[] _buff;
_buff = 0;
_table = 0;
_nchan = 0;
_inmax = 0;
_pstep = 0;
reset ();
}
double
Resampler::inpdist (void) const
{
if (!_table) return 0;
return (int)(_table->_hl + 1 - _nread) - (double)_phase / _table->_np;
}
int
Resampler::inpsize (void) const
{
if (!_table) return 0;
return 2 * _table->_hl;
}
int
Resampler::reset (void)
{
if (!_table) return 1;
inp_count = 0;
out_count = 0;
inp_data = 0;
out_data = 0;
_index = 0;
_nread = 0;
_nzero = 0;
_phase = 0;
if (_table)
{
_nread = 2 * _table->_hl;
return 0;
}
return 1;
}
int
Resampler::process (void)
{
unsigned int hl, ph, np, dp, in, nr, nz, i, n, c;
float *p1, *p2;
if (!_table) return 1;
hl = _table->_hl;
np = _table->_np;
dp = _pstep;
in = _index;
nr = _nread;
ph = _phase;
nz = _nzero;
n = (2 * hl - nr) * _nchan;
p1 = _buff + in * _nchan;
p2 = p1 + n;
while (out_count)
{
if (nr)
{
if (inp_count == 0) break;
if (inp_data)
{
for (c = 0; c < _nchan; c++) p2 [c] = inp_data [c];
inp_data += _nchan;
nz = 0;
}
else
{
for (c = 0; c < _nchan; c++) p2 [c] = 0;
if (nz < 2 * hl) nz++;
}
nr--;
p2 += _nchan;
inp_count--;
}
else
{
if (out_data)
{
if (nz < 2 * hl)
{
float *c1 = _table->_ctab + hl * ph;
float *c2 = _table->_ctab + hl * (np - ph);
for (c = 0; c < _nchan; c++)
{
float *q1 = p1 + c;
float *q2 = p2 + c;
float s = 1e-20f;
for (i = 0; i < hl; i++)
{
q2 -= _nchan;
s += *q1 * c1 [i] + *q2 * c2 [i];
q1 += _nchan;
}
*out_data++ = s - 1e-20f;
}
}
else
{
for (c = 0; c < _nchan; c++) *out_data++ = 0;
}
}
out_count--;
ph += dp;
if (ph >= np)
{
nr = ph / np;
ph -= nr * np;
in += nr;
p1 += nr * _nchan;;
if (in >= _inmax)
{
n = (2 * hl - nr) * _nchan;
memcpy (_buff, p1, n * sizeof (float));
in = 0;
p1 = _buff;
p2 = p1 + n;
}
}
}
}
_index = in;
_nread = nr;
_phase = ph;
_nzero = nz;
return 0;
}
TruePeakdsp::TruePeakdsp (void)
: _m (0)
, _p (0)
, _res (true)
, _res_peak (true)
, _buf (NULL)
{
}
TruePeakdsp::~TruePeakdsp (void)
{
free(_buf);
}
void
TruePeakdsp::process (float const *d, int n)
{
_src.inp_count = n;
_src.inp_data = d;
_src.out_count = n * 4;
_src.out_data = _buf;
_src.process ();
float x = 0;
float v;
assert (_buf);
float *b = _buf;
while (n--) {
v = fabsf(*b++);
if (v > x) x = v;
v = fabsf(*b++);
if (v > x) x = v;
v = fabsf(*b++);
if (v > x) x = v;
v = fabsf(*b++);
if (v > x) x = v;
}
if (_res) {
_m = x;
_res = false;
} else if (x > _m) {
_m = x;
}
if (_res_peak) {
_p = x;
_res_peak = false;
} else if (x > _p) {
_p = x;
}
}
float
TruePeakdsp::read (void)
{
_res = true;
return _m;
}
void
TruePeakdsp::read (float &m, float &p)
{
_res = true;
_res_peak = true;
m = _m;
p = _p;
}
void
TruePeakdsp::reset ()
{
_res = true;
_m = 0;
_p = 0;
}
bool
TruePeakdsp::init (float fsamp)
{
_src.setup(fsamp, fsamp * 4.0, 1, 24, 1.0);
_buf = (float*) malloc(32768 * sizeof(float));
if (!_buf) {
return false;
}
/* q/d initialize */
float zero[8192];
for (int i = 0; i < 8192; ++i) {
zero[i]= 0.0;
}
_src.inp_count = 8192;
_src.inp_data = zero;
_src.out_count = 32768;
_src.out_data = _buf;
_src.process ();
return true;
}
}
///////////////////////////////////////////////////////////////////////////////
using std::string;
using std::vector;
using std::cerr;
using std::endl;
using namespace TruePeakMeter;
VampTruePeak::VampTruePeak(float inputSampleRate)
: Plugin(inputSampleRate)
, m_blockSize(0)
, m_rate (inputSampleRate)
{
}
VampTruePeak::~VampTruePeak()
{
}
string
VampTruePeak::getIdentifier() const
{
return "dBTP";
}
string
VampTruePeak::getName() const
{
return "dBTP Meter";
}
string
VampTruePeak::getDescription() const
{
return "True Peak Meter (4x Oversampling)";
}
string
VampTruePeak::getMaker() const
{
return "Robin Gareus, Fons Adrianesen";
}
int
VampTruePeak::getPluginVersion() const
{
return 2;
}
string
VampTruePeak::getCopyright() const
{
return "GPL version 3 or later";
}
bool
VampTruePeak::initialise(size_t channels, size_t stepSize, size_t blockSize)
{
if (channels < getMinChannelCount() ||
channels > getMaxChannelCount()) {
return false;
}
if (blockSize == 0 || blockSize > 8192) {
return false;
}
if (!_meter.init (m_inputSampleRate)) {
return false;
}
m_blockSize = blockSize;
return true;
}
void
VampTruePeak::reset()
{
_meter.reset ();
}
VampTruePeak::OutputList
VampTruePeak::getOutputDescriptors() const
{
OutputList list;
OutputDescriptor zc;
zc.identifier = "level";
zc.name = "TruePeak";
zc.description = "TruePeak (4x Oversampling)";
zc.unit = "dbTP";
zc.hasFixedBinCount = true;
zc.binCount = 0;
zc.hasKnownExtents = false;
zc.isQuantized = false;
zc.sampleType = OutputDescriptor::OneSamplePerStep;
list.push_back(zc);
zc.identifier = "peaks";
zc.name = "TruePeakPeaks";
zc.description = "Location of Peaks above -1dBTP";
zc.unit = "sec";
zc.hasFixedBinCount = true;
zc.binCount = 0;
zc.hasKnownExtents = false;
zc.isQuantized = false;
zc.sampleType = OutputDescriptor::OneSamplePerStep;
list.push_back(zc);
return list;
}
VampTruePeak::FeatureSet
VampTruePeak::process(const float *const *inputBuffers,
Vamp::RealTime timestamp)
{
if (m_blockSize == 0) {
cerr << "ERROR: VampTruePeak::process: "
<< "VampTruePeak has not been initialised"
<< endl;
return FeatureSet();
}
size_t remain = m_blockSize;
size_t processed = 0;
while (remain > 0) {
size_t to_proc = std::min ((size_t)48, remain);
_meter.process (&inputBuffers[0][processed], to_proc);
processed += to_proc;
remain -= to_proc;
if (_meter.read () >= .89125 /* -1dBTP */) {
long f = Vamp::RealTime::realTime2Frame (timestamp, m_rate);
_above_m1.values.push_back ((float) (f + processed));
}
}
return FeatureSet();
}
VampTruePeak::FeatureSet
VampTruePeak::getRemainingFeatures()
{
FeatureSet returnFeatures;
float m, p;
_meter.read(m, p);
Feature dbtp;
dbtp.hasTimestamp = false;
dbtp.values.push_back(p);
returnFeatures[0].push_back(dbtp);
_above_m1.hasTimestamp = false;
returnFeatures[1].push_back(_above_m1);
return returnFeatures;
}