ardour/libs/vamp-plugins/TonalChangeDetect.cpp

442 lines
12 KiB
C++

/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
QM Vamp Plugin Set
Centre for Digital Music, Queen Mary, University of London.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version. See the file
COPYING included with this distribution for more information.
*/
#include "TonalChangeDetect.h"
#include <base/Pitch.h>
#include <dsp/chromagram/Chromagram.h>
#include <dsp/tonal/ChangeDetectionFunction.h>
TonalChangeDetect::TonalChangeDetect(float fInputSampleRate)
: Vamp::Plugin(fInputSampleRate),
m_chromagram(0),
m_step(0),
m_block(0),
m_stepDelay(0),
m_origin(Vamp::RealTime::zeroTime),
m_haveOrigin(false)
{
m_minMIDIPitch = 32;
m_maxMIDIPitch = 108;
m_tuningFrequency = 440;
m_iSmoothingWidth = 5;
setupConfig();
}
TonalChangeDetect::~TonalChangeDetect()
{
}
bool TonalChangeDetect::initialise(size_t channels, size_t stepSize, size_t blockSize)
{
if (m_chromagram) {
delete m_chromagram;
m_chromagram = 0;
}
if (channels < getMinChannelCount() ||
channels > getMaxChannelCount()) {
std::cerr << "TonalChangeDetect::initialise: Given channel count " << channels << " outside acceptable range (" << getMinChannelCount() << " to " << getMaxChannelCount() << ")" << std::endl;
return false;
}
m_chromagram = new Chromagram(m_config);
m_step = m_chromagram->getHopSize();
m_block = m_chromagram->getFrameSize();
if (stepSize != m_step) {
std::cerr << "TonalChangeDetect::initialise: Given step size " << stepSize << " differs from only acceptable value " << m_step << std::endl;
delete m_chromagram;
m_chromagram = 0;
return false;
}
if (blockSize != m_block) {
std::cerr << "TonalChangeDetect::initialise: Given step size " << stepSize << " differs from only acceptable value " << m_step << std::endl;
delete m_chromagram;
m_chromagram = 0;
return false;
}
// m_stepDelay = (blockSize - stepSize) / 2;
// m_stepDelay = m_stepDelay / stepSize;
m_stepDelay = (blockSize - stepSize) / stepSize; //!!! why? seems about right to look at, but...
// std::cerr << "TonalChangeDetect::initialise: step " << stepSize << ", block "
// << blockSize << ", delay " << m_stepDelay << std::endl;
m_vaCurrentVector.resize(12, 0.0);
return true;
}
std::string TonalChangeDetect::getIdentifier() const
{
return "qm-tonalchange";
}
std::string TonalChangeDetect::getName() const
{
return "Tonal Change";
}
std::string TonalChangeDetect::getDescription() const
{
return "Detect and return the positions of harmonic changes such as chord boundaries";
}
std::string TonalChangeDetect::getMaker() const
{
return "Queen Mary, University of London";
}
int TonalChangeDetect::getPluginVersion() const
{
return 2;
}
std::string TonalChangeDetect::getCopyright() const
{
return "Plugin by Martin Gasser and Christopher Harte. Copyright (c) 2006-2009 QMUL - All Rights Reserved";
}
TonalChangeDetect::ParameterList TonalChangeDetect::getParameterDescriptors() const
{
ParameterList list;
ParameterDescriptor desc;
desc.identifier = "smoothingwidth";
desc.name = "Gaussian smoothing";
desc.description = "Window length for the internal smoothing operation, in chroma analysis frames";
desc.unit = "frames";
desc.minValue = 0;
desc.maxValue = 20;
desc.defaultValue = 5;
desc.isQuantized = true;
desc.quantizeStep = 1;
list.push_back(desc);
desc.identifier = "minpitch";
desc.name = "Chromagram minimum pitch";
desc.unit = "MIDI units";
desc.description = "Lowest pitch in MIDI units to be included in the chroma analysis";
desc.minValue = 0;
desc.maxValue = 127;
desc.defaultValue = 32;
desc.isQuantized = true;
desc.quantizeStep = 1;
list.push_back(desc);
desc.identifier = "maxpitch";
desc.name = "Chromagram maximum pitch";
desc.unit = "MIDI units";
desc.description = "Highest pitch in MIDI units to be included in the chroma analysis";
desc.minValue = 0;
desc.maxValue = 127;
desc.defaultValue = 108;
desc.isQuantized = true;
desc.quantizeStep = 1;
list.push_back(desc);
desc.identifier = "tuning";
desc.name = "Chromagram tuning frequency";
desc.unit = "Hz";
desc.description = "Frequency of concert A in the music under analysis";
desc.minValue = 420;
desc.maxValue = 460;
desc.defaultValue = 440;
desc.isQuantized = false;
list.push_back(desc);
return list;
}
float
TonalChangeDetect::getParameter(std::string param) const
{
if (param == "smoothingwidth") {
return m_iSmoothingWidth;
}
if (param == "minpitch") {
return m_minMIDIPitch;
}
if (param == "maxpitch") {
return m_maxMIDIPitch;
}
if (param == "tuning") {
return m_tuningFrequency;
}
std::cerr << "WARNING: ChromagramPlugin::getParameter: unknown parameter \""
<< param << "\"" << std::endl;
return 0.0;
}
void
TonalChangeDetect::setParameter(std::string param, float value)
{
if (param == "minpitch") {
m_minMIDIPitch = lrintf(value);
} else if (param == "maxpitch") {
m_maxMIDIPitch = lrintf(value);
} else if (param == "tuning") {
m_tuningFrequency = value;
}
else if (param == "smoothingwidth") {
m_iSmoothingWidth = int(value);
} else {
std::cerr << "WARNING: ChromagramPlugin::setParameter: unknown parameter \""
<< param << "\"" << std::endl;
}
setupConfig();
}
void TonalChangeDetect::setupConfig()
{
m_config.FS = lrintf(m_inputSampleRate);
m_config.min = Pitch::getFrequencyForPitch
(m_minMIDIPitch, 0, m_tuningFrequency);
m_config.max = Pitch::getFrequencyForPitch
(m_maxMIDIPitch, 0, m_tuningFrequency);
m_config.BPO = 12;
m_config.CQThresh = 0.0054;
m_config.normalise = MathUtilities::NormaliseNone;
m_step = 0;
m_block = 0;
}
void
TonalChangeDetect::reset()
{
if (m_chromagram) {
delete m_chromagram;
m_chromagram = new Chromagram(m_config);
}
while (!m_pending.empty()) m_pending.pop();
m_vaCurrentVector.clear();
m_TCSGram.clear();
m_origin = Vamp::RealTime::zeroTime;
m_haveOrigin = false;
}
size_t
TonalChangeDetect::getPreferredStepSize() const
{
if (!m_step) {
Chromagram chroma(m_config);
m_step = chroma.getHopSize();
m_block = chroma.getFrameSize();
}
return m_step;
}
size_t
TonalChangeDetect::getPreferredBlockSize() const
{
if (!m_step) {
Chromagram chroma(m_config);
m_step = chroma.getHopSize();
m_block = chroma.getFrameSize();
}
return m_block;
}
TonalChangeDetect::OutputList TonalChangeDetect::getOutputDescriptors() const
{
OutputList list;
OutputDescriptor hc;
hc.identifier = "tcstransform";
hc.name = "Transform to 6D Tonal Content Space";
hc.unit = "";
hc.description = "Representation of content in a six-dimensional tonal space";
hc.hasFixedBinCount = true;
hc.binCount = 6;
hc.hasKnownExtents = true;
hc.minValue = -1.0;
hc.maxValue = 1.0;
hc.isQuantized = false;
hc.sampleType = OutputDescriptor::OneSamplePerStep;
OutputDescriptor d;
d.identifier = "tcfunction";
d.name = "Tonal Change Detection Function";
d.unit = "";
d.description = "Estimate of the likelihood of a tonal change occurring within each spectral frame";
d.minValue = 0;
d.minValue = 2;
d.hasFixedBinCount = true;
d.binCount = 1;
d.hasKnownExtents = false;
d.isQuantized = false;
d.sampleType = OutputDescriptor::VariableSampleRate;
double dStepSecs = double(getPreferredStepSize()) / m_inputSampleRate;
d.sampleRate = 1.0f / dStepSecs;
OutputDescriptor changes;
changes.identifier = "changepositions";
changes.name = "Tonal Change Positions";
changes.unit = "";
changes.description = "Estimated locations of tonal changes";
changes.hasFixedBinCount = true;
changes.binCount = 0;
changes.hasKnownExtents = false;
changes.isQuantized = false;
changes.sampleType = OutputDescriptor::VariableSampleRate;
changes.sampleRate = 1.0 / dStepSecs;
list.push_back(hc);
list.push_back(d);
list.push_back(changes);
return list;
}
TonalChangeDetect::FeatureSet
TonalChangeDetect::process(const float *const *inputBuffers,
Vamp::RealTime timestamp)
{
if (!m_chromagram) {
std::cerr << "ERROR: TonalChangeDetect::process: "
<< "Chromagram has not been initialised"
<< std::endl;
return FeatureSet();
}
if (!m_haveOrigin) m_origin = timestamp;
// convert float* to double*
double *tempBuffer = new double[m_block];
for (size_t i = 0; i < m_block; ++i) {
tempBuffer[i] = inputBuffers[0][i];
}
double *output = m_chromagram->process(tempBuffer);
delete[] tempBuffer;
for (size_t i = 0; i < 12; i++)
{
m_vaCurrentVector[i] = output[i];
}
FeatureSet returnFeatures;
if (m_stepDelay == 0) {
m_vaCurrentVector.normalizeL1();
TCSVector tcsVector = m_TonalEstimator.transform2TCS(m_vaCurrentVector);
m_TCSGram.addTCSVector(tcsVector);
Feature feature;
feature.hasTimestamp = false;
for (int i = 0; i < 6; i++)
{ feature.values.push_back(static_cast<float>(tcsVector[i])); }
feature.label = "";
returnFeatures[0].push_back(feature);
return returnFeatures;
}
if (m_pending.size() == m_stepDelay) {
ChromaVector v = m_pending.front();
v.normalizeL1();
TCSVector tcsVector = m_TonalEstimator.transform2TCS(v);
m_TCSGram.addTCSVector(tcsVector);
Feature feature;
feature.hasTimestamp = false;
for (int i = 0; i < 6; i++)
{ feature.values.push_back(static_cast<float>(tcsVector[i])); }
feature.label = "";
returnFeatures[0].push_back(feature);
m_pending.pop();
} else {
returnFeatures[0].push_back(Feature());
m_TCSGram.addTCSVector(TCSVector());
}
m_pending.push(m_vaCurrentVector);
return returnFeatures;
}
TonalChangeDetect::FeatureSet TonalChangeDetect::getRemainingFeatures()
{
FeatureSet returnFeatures;
while (!m_pending.empty()) {
ChromaVector v = m_pending.front();
v.normalizeL1();
TCSVector tcsVector = m_TonalEstimator.transform2TCS(v);
m_TCSGram.addTCSVector(tcsVector);
Feature feature;
feature.hasTimestamp = false;
for (int i = 0; i < 6; i++)
{ feature.values.push_back(static_cast<float>(tcsVector[i])); }
feature.label = "";
returnFeatures[0].push_back(feature);
m_pending.pop();
}
ChangeDFConfig dfc;
dfc.smoothingWidth = double(m_iSmoothingWidth);
ChangeDetectionFunction df(dfc);
ChangeDistance d = df.process(m_TCSGram);
for (int i = 0; i < int(d.size()); i++)
{
double dCurrent = d[i];
double dPrevious = d[i > 0 ? i - 1 : i];
double dNext = d[i < int(d.size())-1 ? i + 1 : i];
Feature feature;
feature.label = "";
feature.hasTimestamp = true;
feature.timestamp = m_origin +
Vamp::RealTime::frame2RealTime(i*m_step, m_inputSampleRate);
feature.values.push_back(dCurrent);
returnFeatures[1].push_back(feature);
if (dCurrent > dPrevious && dCurrent > dNext)
{
Feature featurePeak;
featurePeak.label = "";
featurePeak.hasTimestamp = true;
featurePeak.timestamp = m_origin +
Vamp::RealTime::frame2RealTime(i*m_step, m_inputSampleRate);
returnFeatures[2].push_back(featurePeak);
}
}
return returnFeatures;
}