ardour/libs/pbd/pbd/timing.h

327 lines
7.1 KiB
C++

/*
* Copyright (C) 2014-2016 Tim Mayberry <mojofunk@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef __libpbd_timing_h__
#define __libpbd_timing_h__
#include <glib.h>
#include <stdint.h>
#include <cmath>
#include <limits>
#include <string>
#include <vector>
#include "pbd/microseconds.h"
#include "pbd/libpbd_visibility.h"
#ifdef COMPILER_MSVC
#undef min
#undef max
#endif
namespace PBD {
LIBPBD_API bool get_min_max_avg_total (const std::vector<microseconds_t>& values, microseconds_t& min, microseconds_t& max, microseconds_t& avg, microseconds_t& total);
LIBPBD_API std::string timing_summary (const std::vector<microseconds_t>& values);
/**
* This class allows collecting timing data using two different
* techniques. The first is using start() and update() and then
* calling elapsed() to get the elapsed time. This is useful when
* you want to measure the elapsed time between two different
* execution points. e.g
*
* timing.start();
* do_stuff();
* timing.update();
* cerr << "do_stuff took: "
* << timing.elapsed()
* << "usecs" << endl;
*
* The other is timing intervals using start() and calling
* get_interval() periodically to measure the time intervals
* between the same execution point. The difference is necessary
* to get the most accurate timing information when timing
* intervals but I didn't feel it necessary to have two separate
* classes.
*/
class LIBPBD_API Timing
{
public:
Timing ()
: m_start_val(0)
, m_last_val(0)
{ start ();}
bool valid () const {
return (m_start_val != 0 && m_last_val != 0);
}
void start () {
m_start_val = PBD::get_microseconds ();
m_last_val = 0;
}
void update () {
m_last_val = PBD::get_microseconds ();
}
void update (microseconds_t interval) {
m_start_val = 0;
m_last_val = interval;
}
void reset () {
m_start_val = m_last_val = 0;
}
microseconds_t get_interval () {
microseconds_t elapsed = 0;
update ();
if (valid()) {
elapsed = m_last_val - m_start_val;
m_start_val = m_last_val;
m_last_val = 0;
}
return elapsed;
}
bool started() const { return m_start_val != 0; }
/// @return Elapsed time in microseconds
microseconds_t elapsed () const {
return m_last_val - m_start_val;
}
/// @return Elapsed time in milliseconds
microseconds_t elapsed_msecs () const {
return elapsed () / 1000;
}
microseconds_t start_time() const { return m_start_val; }
microseconds_t last_time() const { return m_last_val; }
protected:
microseconds_t m_start_val;
microseconds_t m_last_val;
};
class LIBPBD_API TimingStats : public Timing
{
public:
TimingStats ()
{
/* override implicit Timing::start () */
reset ();
}
void update ()
{
if (_queue_reset) {
reset ();
} else {
Timing::update ();
/* On Windows, querying the performance counter can fail occasionally (-1).
* Also on some multi-core systems, timers are CPU specific and not
* synchronized. The query can also fail, which will
* result in a value of zero, which is essentially impossible.
*/
if (m_start_val <= 0 || m_last_val <= 0 || m_start_val > m_last_val) {
return;
}
calc ();
}
}
void queue_reset () {
_queue_reset = true;
}
void reset ()
{
_queue_reset = 0;
Timing::reset ();
_min = std::numeric_limits<microseconds_t>::max();
_max = 0;
_cnt = 0;
_avg = 0.;
_vm = 0.;
_vs = 0.;
}
bool valid () const {
return Timing::valid () && _cnt > 1;
}
bool get_stats (microseconds_t& min,
microseconds_t& max,
double& avg,
double& dev) const
{
if (_cnt < 2) {
return false;
}
min = _min;
max = _max;
avg = _avg / (double)_cnt;
dev = sqrt (_vs / ((double) _cnt - 1.0));
return true;
}
private:
void calc ()
{
const microseconds_t diff = elapsed ();
_avg += (double) diff;
if (diff > _max) {
_max = diff;
}
if (diff < _min) {
_min = diff;
}
if (_cnt == 0) {
_vm = (double) diff;
} else {
const double ela = (double) diff;
const double var_m1 = _vm;
_vm = _vm + (ela - _vm) / (1.0 + (double) _cnt);
_vs = _vs + (ela - _vm) * (ela - var_m1);
}
++_cnt;
}
microseconds_t _cnt;
microseconds_t _min;
microseconds_t _max;
double _avg;
double _vm;
double _vs;
int _queue_reset;
};
/** Provides an exception (and return path)-safe method to measure a timer
* interval. The timer is started at scope entry, and updated at scope exit
* (however that occurs)
*/
class LIBPBD_API TimerRAII
{
public:
TimerRAII (TimingStats& ts, bool dbg = false) : stats (ts) { stats.start(); }
~TimerRAII() { stats.update(); }
TimingStats& stats;
};
/** Reverse semantics from TimerRAII. This starts the timer at scope exit,
* and then updates it (computes interval) at scope entry. This is designed
* for use with a callback API like CoreAudio, where we want to time the
* interval between us being done with our work, and when our callback is
* next executed.
*/
class LIBPBD_API WaitTimerRAII
{
public:
WaitTimerRAII (TimingStats& ts) : stats (ts) { if (stats.started()) { stats.update(); } }
~WaitTimerRAII() { stats.start(); }
TimingStats& stats;
};
class LIBPBD_API TimingData
{
public:
TimingData () : m_reserve_size(256)
{ reset (); }
void start_timing () {
m_timing.start ();
}
void add_elapsed () {
m_timing.update ();
if (m_timing.valid()) {
m_elapsed_values.push_back (m_timing.elapsed());
}
}
void add_interval () {
microseconds_t interval = m_timing.get_interval ();
m_elapsed_values.push_back (interval);
}
void reset () {
m_elapsed_values.clear ();
m_elapsed_values.reserve (m_reserve_size);
}
std::string summary () const
{ return timing_summary (m_elapsed_values); }
bool get_min_max_avg_total (microseconds_t& min,
microseconds_t& max,
microseconds_t& avg,
microseconds_t& total) const
{ return PBD::get_min_max_avg_total (m_elapsed_values, min, max, avg, total); }
void reserve (uint32_t reserve_size)
{ m_reserve_size = reserve_size; reset (); }
std::vector<microseconds_t>::size_type size () const
{ return m_elapsed_values.size(); }
private:
Timing m_timing;
uint32_t m_reserve_size;
std::vector<microseconds_t> m_elapsed_values;
};
class LIBPBD_API Timed
{
public:
Timed (TimingData& data)
: m_data(data)
{
m_data.start_timing ();
}
~Timed ()
{
m_data.add_elapsed ();
}
private:
TimingData& m_data;
};
} // namespace PBD
#endif // __libpbd_timing_h__