ardour/libs/canvas/utils.cc

96 lines
4.0 KiB
C++

/*
* Copyright (C) 2012 Carl Hetherington <carl@carlh.net>
* Copyright (C) 2013-2015 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2015-2017 Robin Gareus <robin@gareus.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <algorithm>
#include <cmath>
#include <stdint.h>
#include <cairomm/context.h>
#include "canvas/utils.h"
using namespace std;
using namespace ArdourCanvas;
ArdourCanvas::Distance
ArdourCanvas::distance_to_segment_squared (Duple const & p, Duple const & p1, Duple const & p2, double& t, Duple& at)
{
static const double kMinSegmentLenSquared = 0.00000001; // adjust to suit. If you use float, you'll probably want something like 0.000001f
static const double kEpsilon = 1.0E-14; // adjust to suit. If you use floats, you'll probably want something like 1E-7f
double dx = p2.x - p1.x;
double dy = p2.y - p1.y;
double dp1x = p.x - p1.x;
double dp1y = p.y - p1.y;
const double segLenSquared = (dx * dx) + (dy * dy);
if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared) {
// segment is a point.
at = p1;
t = 0.0;
return ((dp1x * dp1x) + (dp1y * dp1y));
}
// Project a line from p to the segment [p1,p2]. By considering the line
// extending the segment, parameterized as p1 + (t * (p2 - p1)),
// we find projection of point p onto the line.
// It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
t = ((dp1x * dx) + (dp1y * dy)) / segLenSquared;
if (t < kEpsilon) {
// intersects at or to the "left" of first segment vertex (p1.x, p1.y). If t is approximately 0.0, then
// intersection is at p1. If t is less than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t > -kEpsilon) {
// intersects at 1st segment vertex
t = 0.0;
}
// set our 'intersection' point to p1.
at = p1;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then qx would be (p1.x + (t * dx)) and qy would be (p1.y + (t * dy)).
} else if (t > (1.0 - kEpsilon)) {
// intersects at or to the "right" of second segment vertex (p2.x, p2.y). If t is approximately 1.0, then
// intersection is at p2. If t is greater than that, then there is no intersection (i.e. p is not within
// the 'bounds' of the segment)
if (t < (1.0 + kEpsilon)) {
// intersects at 2nd segment vertex
t = 1.0;
}
// set our 'intersection' point to p2.
at = p2;
// Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
// we were doing PointLineDistanceSquared, then qx would be (p1.x + (t * dx)) and qy would be (p1.y + (t * dy)).
} else {
// The projection of the point to the point on the segment that is perpendicular succeeded and the point
// is 'within' the bounds of the segment. Set the intersection point as that projected point.
at = Duple (p1.x + (t * dx), p1.y + (t * dy));
}
// return the squared distance from p to the intersection point. Note that we return the squared distance
// as an optimization because many times you just need to compare relative distances and the squared values
// works fine for that. If you want the ACTUAL distance, just take the square root of this value.
double dpqx = p.x - at.x;
double dpqy = p.y - at.y;
return ((dpqx * dpqx) + (dpqy * dpqy));
}