ardour/libs/ardour/sse_functions_avx.cc

118 lines
3.6 KiB
C++

/*
* Copyright (C) 2015 Paul Davis <paul@linuxaudiosystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <xmmintrin.h>
#include <immintrin.h>
#include <stdint.h>
void
x86_sse_avx_find_peaks(const float* buf, uint32_t nframes, float *min, float *max)
{
__m256 current_max, current_min, work;
// Load max and min values into all eight slots of the YMM registers
current_min = _mm256_set1_ps(*min);
current_max = _mm256_set1_ps(*max);
// Work input until "buf" reaches 16 byte alignment
while ( ((intptr_t)buf) % 32 != 0 && nframes > 0) {
// Load the next float into the work buffer
work = _mm256_set1_ps(*buf);
current_min = _mm256_min_ps(current_min, work);
current_max = _mm256_max_ps(current_max, work);
buf++;
nframes--;
}
// use 64 byte prefetch for quadruple quads:
// load each 64 bytes into cash before processing
while (nframes >= 16) {
#if defined(COMPILER_MSVC) || defined(COMPILER_MINGW)
_mm_prefetch(((char*)buf+64), _mm_hint(0) );
#else
__builtin_prefetch(buf+64,0,0);
#endif
work = _mm256_load_ps(buf);
current_min = _mm256_min_ps(current_min, work);
current_max = _mm256_max_ps(current_max, work);
buf+=8;
work = _mm256_load_ps(buf);
current_min = _mm256_min_ps(current_min, work);
current_max = _mm256_max_ps(current_max, work);
buf+=8;
nframes-=16;
}
// work through 32 bytes aligned buffers
while (nframes >= 8) {
work = _mm256_load_ps(buf);
current_min = _mm256_min_ps(current_min, work);
current_max = _mm256_max_ps(current_max, work);
buf+=8;
nframes-=8;
}
// work through the rest < 4 samples
while ( nframes > 0) {
// Load the next float into the work buffer
work = _mm256_set1_ps(*buf);
current_min = _mm256_min_ps(current_min, work);
current_max = _mm256_max_ps(current_max, work);
buf++;
nframes--;
}
// Find min & max value in current_max through shuffle tricks
work = current_min;
work = _mm256_shuffle_ps (current_min, current_min, _MM_SHUFFLE(2, 3, 0, 1));
current_min = _mm256_min_ps (work, current_min);
work = _mm256_shuffle_ps (current_min, current_min, _MM_SHUFFLE(1, 0, 3, 2));
current_min = _mm256_min_ps (work, current_min);
work = _mm256_permute2f128_ps( current_min, current_min, 1);
current_min = _mm256_min_ps (work, current_min);
*min = current_min[0];
work = current_max;
work = _mm256_shuffle_ps(current_max, current_max, _MM_SHUFFLE(2, 3, 0, 1));
current_max = _mm256_max_ps (work, current_max);
work = _mm256_shuffle_ps(current_max, current_max, _MM_SHUFFLE(1, 0, 3, 2));
current_max = _mm256_max_ps (work, current_max);
work = _mm256_permute2f128_ps( current_max, current_max, 1);
current_max = _mm256_max_ps (work, current_max);
*max = current_max[0];
// zero upper 128 bit of 256 bit ymm register to avoid penalties using non-AVX instructions
_mm256_zeroupper ();
}