ardour/libs/ardour/sse_functions_64bit_win.s

673 lines
13 KiB
ArmAsm

/*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#; Microsoft version of SSE sample processing functions
#; void x86_sse_mix_buffers_with_gain (float *dst, float *src, unsigned int nframes, float gain);
.globl x86_sse_mix_buffers_with_gain
.def x86_sse_mix_buffers_with_gain; .scl 2; .type 32;
.endef
x86_sse_mix_buffers_with_gain:
#; due to Microsoft calling convention
#; %rcx float *dst
#; %rdx float *src
#; %r8 unsigned int nframes
#; %xmm3 float gain
#; due to System V AMD64 (Linux) calling convention
#; %rdi float *dst
#; %rsi float *src
#; %rdx unsigned int nframes
#; %xmm0 float gain
pushq %rbp
movq %rsp, %rbp
#; save the registers
pushq %rbx #; must be preserved
pushq %rcx
pushq %rdx
pushq %rdi #; must be preserved
pushq %rsi #; must be preserved
#; to keep algorithms universal - move input params into Linux specific registers
movq %rcx, %rdi
movq %rdx, %rsi
movq %r8, %rdx
movss %xmm3, %xmm0
#; if nframes == 0, go to end
cmp $0, %rdx
je .MBWG_END
#; Check for alignment
movq %rdi, %rax
andq $12, %rax #; mask alignment offset
movq %rsi, %rbx
andq $12, %rbx #; mask alignment offset
cmp %rax, %rbx
jne .MBWG_NONALIGN #; if not aligned, calculate manually
#; if we are aligned
cmp $0, %rbx
jz .MBWG_SSE
#; Pre-loop, we need to run 1-3 frames "manually" without
#; SSE instructions
.MBWG_PRELOOP:
#; gain is already in %xmm0
movss (%rsi), %xmm1
mulss %xmm0, %xmm1
addss (%rdi), %xmm1
movss %xmm1, (%rdi)
addq $4, %rdi #; dst++
addq $4, %rsi #; src++
decq %rdx #; nframes--
jz .MBWG_END
addq $4, %rbx
cmp $16, %rbx #; test if we've reached 16 byte alignment
jne .MBWG_PRELOOP
.MBWG_SSE:
cmp $4, %rdx #; we know it's not zero, but if it's not >=4, then
jnge .MBWG_NONALIGN #; we jump straight to the "normal" code
#; gain is already in %xmm0
shufps $0x00, %xmm0, %xmm0
.MBWG_SSELOOP:
movaps (%rsi), %xmm1 #; source => xmm0
mulps %xmm0, %xmm1 #; apply gain to source
addps (%rdi), %xmm1 #; mix with destination
movaps %xmm1, (%rdi) #; copy result to destination
addq $16, %rdi #; dst+=4
addq $16, %rsi #; src+=4
subq $4, %rdx #; nframes-=4
cmp $4, %rdx
jge .MBWG_SSELOOP
cmp $0, %rdx
je .MBWG_END
#; if there are remaining frames, the nonalign code will do nicely
#; for the rest 1-3 frames.
.MBWG_NONALIGN:
#; not aligned!
#; gain is already in %xmm0
.MBWG_NONALIGNLOOP:
movss (%rsi), %xmm1
mulss %xmm0, %xmm1
addss (%rdi), %xmm1
movss %xmm1, (%rdi)
addq $4, %rdi
addq $4, %rsi
decq %rdx
jnz .MBWG_NONALIGNLOOP
.MBWG_END:
popq %rsi
popq %rdi
popq %rdx
popq %rcx
popq %rbx
#; return
leave
ret
#; void x86_sse_mix_buffers_no_gain (float *dst, float *src, unsigned int nframes);
.globl x86_sse_mix_buffers_no_gain
.def x86_sse_mix_buffers_no_gain; .scl 2; .type 32;
.endef
x86_sse_mix_buffers_no_gain:
#; due to Microsoft calling convention
#; %rcx float *dst
#; %rdx float *src
#; %r8 unsigned int nframes
#; due to System V AMD64 (Linux) calling convention
#; %rdi float *dst
#; %rsi float *src
#; %rdx unsigned int nframes
pushq %rbp
movq %rsp, %rbp
#; save the registers
pushq %rbx #; must be preserved
pushq %rcx
pushq %rdx
pushq %rdi #; must be preserved
pushq %rsi #; must be preserved
#; to keep algorithms universal - move input params into Linux specific registers
movq %rcx, %rdi
movq %rdx, %rsi
movq %r8, %rdx
#; the real function
#; if nframes == 0, go to end
cmp $0, %r8
je .MBNG_END
#; Check for alignment
movq %rdi, %rax
andq $12, %rax #; mask alignment offset
movq %rsi, %rbx
andq $12, %rbx #; mask alignment offset
cmp %rax, %rbx
jne .MBNG_NONALIGN #; if not aligned, calculate manually
cmp $0, %rbx
je .MBNG_SSE
#; Pre-loop, we need to run 1-3 frames "manually" without
#; SSE instructions
.MBNG_PRELOOP:
movss (%rsi), %xmm0
addss (%rdi), %xmm0
movss %xmm0, (%rdi)
addq $4, %rdi #; dst++
addq $4, %rsi #; src++
decq %rdx #; nframes--
jz .MBNG_END
addq $4, %rbx
cmp $16, %rbx #; test if we've reached 16 byte alignment
jne .MBNG_PRELOOP
.MBNG_SSE:
cmp $4, %rdx #; if there are frames left, but less than 4
jnge .MBNG_NONALIGN #; we can't run SSE
.MBNG_SSELOOP:
movaps (%rsi), %xmm0 #; source => xmm0
addps (%rdi), %xmm0 #; mix with destination
movaps %xmm0, (%rdi) #; copy result to destination
addq $16, %rdi #; dst+=4
addq $16, %rsi #; src+=4
subq $4, %rdx #; nframes-=4
cmp $4, %rdx
jge .MBNG_SSELOOP
cmp $0, %rdx
je .MBNG_END
#; if there are remaining frames, the nonalign code will do nicely
#; for the rest 1-3 frames.
.MBNG_NONALIGN:
#; not aligned!
movss (%rsi), %xmm0 #; src => xmm0
addss (%rdi), %xmm0 #; xmm0 += dst
movss %xmm0, (%rdi) #; xmm0 => dst
addq $4, %rdi
addq $4, %rsi
decq %rdx
jnz .MBNG_NONALIGN
.MBNG_END:
popq %rsi
popq %rdi
popq %rdx
popq %rcx
popq %rbx
#; return
leave
ret
#; void x86_sse_apply_gain_to_buffer (float *buf, unsigned int nframes, float gain);
.globl x86_sse_apply_gain_to_buffer
.def x86_sse_apply_gain_to_buffer; .scl 2; .type 32;
.endef
x86_sse_apply_gain_to_buffer:
#; due to Microsoft calling convention
#; %rcx float *buf 32(%rbp)
#; %rdx unsigned int nframes
#; %xmm2 float gain
#; %xmm1 float buf[0]
#; due to System V AMD64 (Linux) calling convention
#; %rdi float *buf 32(%rbp)
#; %rsi unsigned int nframes
#; %xmm0 float gain
#; %xmm1 float buf[0]
pushq %rbp
movq %rsp, %rbp
#; save the registers
pushq %rcx
pushq %rdi #; must be preserved
pushq %rsi #; must be preserved
#; to keep algorithms universal - move input params into Linux specific registers
movq %rcx, %rdi
movq %rdx, %rsi
movss %xmm2, %xmm0
#; the real function
#; if nframes == 0, go to end
movq %rsi, %rcx #; nframes
cmp $0, %rcx
je .AG_END
#; set up the gain buffer (gain is already in %xmm0)
shufps $0x00, %xmm0, %xmm0
#; Check for alignment
movq %rdi, %rdx #; buf => %rdx
andq $12, %rdx #; mask bits 1 & 2, result = 0, 4, 8 or 12
jz .AG_SSE #; if buffer IS aligned
#; PRE-LOOP
#; we iterate 1-3 times, doing normal x87 float comparison
#; so we reach a 16 byte aligned "buf" (=%rdi) value
.AGLP_START:
#; Load next value from the buffer into %xmm1
movss (%rdi), %xmm1
mulss %xmm0, %xmm1
movss %xmm1, (%rdi)
#; increment buffer, decrement counter
addq $4, %rdi #; buf++;
decq %rcx #; nframes--
jz .AG_END #; if we run out of frames, we go to the end
addq $4, %rdx #; one non-aligned byte less
cmp $16, %rdx
jne .AGLP_START #; if more non-aligned frames exist, we do a do-over
.AG_SSE:
#; We have reached the 16 byte aligned "buf" ("rdi") value
#; Figure out how many loops we should do
movq %rcx, %rax #; copy remaining nframes to %rax for division
shr $2,%rax #; unsigned divide by 4
#; %rax = SSE iterations
cmp $0, %rax
je .AGPOST_START
.AGLP_SSE:
movaps (%rdi), %xmm1
mulps %xmm0, %xmm1
movaps %xmm1, (%rdi)
addq $16, %rdi #; buf + 4
subq $4, %rcx #; nframes-=4
decq %rax
jnz .AGLP_SSE
#; Next we need to post-process all remaining frames
#; the remaining frame count is in %rcx
andq $3, %rcx #; nframes % 4
jz .AG_END
.AGPOST_START:
movss (%rdi), %xmm1
mulss %xmm0, %xmm1
movss %xmm1, (%rdi)
#; increment buffer, decrement counter
addq $4, %rdi #; buf++;
decq %rcx #; nframes--
jnz .AGPOST_START #; if we run out of frames, we go to the end
.AG_END:
popq %rsi
popq %rdi
popq %rcx
#; return
leave
ret
#; end proc
#; x86_sse_apply_gain_vector(float *buf, float *gain_vector, unsigned int nframes)
.globl x86_sse_apply_gain_vector
.def x86_sse_apply_gain_vector; .scl 2; .type 32;
.endef
x86_sse_apply_gain_vector:
#; due to Microsoft calling convention
#; %rcx float *buf
#; %rdx float *gain_vector
#; %r8 unsigned int nframes
#; due to System V AMD64 (Linux) calling convention
#; %rdi float *buf
#; %rsi float *gain_vector
#; %rdx unsigned int nframes
pushq %rbp
movq %rsp, %rbp
#; save the registers
pushq %rbx #; must be preserved
pushq %rcx
pushq %rdx
pushq %rdi #; must be preserved
pushq %rsi #; must be preserved
#; to keep algorithms universal - move input params into Linux specific registers
movq %rcx, %rdi
movq %rdx, %rsi
movq %r8, %rdx
#; if nframes == 0 go to end
cmp $0, %rdx
je .AGA_END
#; Check alignment
movq %rdi, %rax
andq $12, %rax
movq %rsi, %rbx
andq $12, %rbx
cmp %rax,%rbx
jne .AGA_ENDLOOP
cmp $0, %rax
jz .AGA_SSE #; if buffers are aligned, jump to the SSE loop
#; Buffers aren't 16 byte aligned, but they are unaligned by the same amount
.AGA_ALIGNLOOP:
movss (%rdi), %xmm0 #; buf => xmm0
movss (%rsi), %xmm1 #; gain value => xmm1
mulss %xmm1, %xmm0 #; xmm1 * xmm0 => xmm0
movss %xmm0, (%rdi) #; signal with gain => buf
decq %rdx
jz .AGA_END
addq $4, %rdi #; buf++
addq $4, %rsi #; gab++
addq $4, %rax
cmp $16, %rax
jne .AGA_ALIGNLOOP
#; There are frames left for sure, as that is checked in the beginning
#; and within the previous loop. BUT, there might be less than 4 frames
#; to process
.AGA_SSE:
movq %rdx, %rax #; nframes => %rax
shr $2, %rax #; unsigned divide by 4
cmp $0, %rax
je .AGA_ENDLOOP
.AGA_SSELOOP:
movaps (%rdi), %xmm0
movaps (%rsi), %xmm1
mulps %xmm1, %xmm0
movaps %xmm0, (%rdi)
addq $16, %rdi
addq $16, %rsi
decq %rax
jnz .AGA_SSELOOP
andq $3, %rdx #; Remaining frames are nframes & 3
jz .AGA_END
#; Inside this loop, we know there are frames left to process
#; but because either there are < 4 frames left, or the buffers
#; are not aligned, we can't use the parallel SSE ops
.AGA_ENDLOOP:
movss (%rdi), %xmm0 #; buf => xmm0
movss (%rsi), %xmm1 #; gain value => xmm1
mulss %xmm1, %xmm0 #; xmm1 * xmm0 => xmm0
movss %xmm0, (%rdi) #; signal with gain => buf
addq $4,%rdi
addq $4,%rsi
decq %rdx #; nframes--
jnz .AGA_ENDLOOP
.AGA_END:
popq %rsi
popq %rdi
popq %rdx
popq %rcx
popq %rbx
leave
ret
#; end proc
#; float x86_sse_compute_peak(float *buf, long nframes, float current);
.globl x86_sse_compute_peak
.def x86_sse_compute_peak; .scl 2; .type 32;
.endef
x86_sse_compute_peak:
#; due to Microsoft calling convention
#; %rcx float* buf 32(%rbp)
#; %rdx unsigned int nframes
#; %xmm2 float current
#; %xmm1 float buf[0]
#; due to System V AMD64 (Linux) calling convention
#; %rdi float* buf 32(%rbp)
#; %rsi unsigned int nframes
#; %xmm0 float current
#; %xmm1 float buf[0]
pushq %rbp
movq %rsp, %rbp
#; save registers
pushq %rcx
pushq %rdi #; must be preserved
pushq %rsi #; must be preserved
#; to keep algorithms universal - move input params into Linux specific registers
movq %rcx, %rdi
movq %rdx, %rsi
movss %xmm2, %xmm0
#; if nframes == 0, go to end
movq %rsi, %rcx #; nframes
cmp $0, %rcx
je .CP_END
#; create the "abs" mask in %xmm2
pushq $2147483647
movss (%rsp), %xmm2
addq $8, %rsp
shufps $0x00, %xmm2, %xmm2
#; Check for alignment
#;movq 8(%rbp), %rdi #; buf
movq %rdi, %rdx #; buf => %rdx
andq $12, %rdx #; mask bits 1 & 2, result = 0, 4, 8 or 12
jz .CP_SSE #; if buffer IS aligned
#; PRE-LOOP
#; we iterate 1-3 times, doing normal x87 float comparison
#; so we reach a 16 byte aligned "buf" (=%rdi) value
.LP_START:
#; Load next value from the buffer
movss (%rdi), %xmm1
andps %xmm2, %xmm1
maxss %xmm1, %xmm0
#; increment buffer, decrement counter
addq $4, %rdi #; buf++;
decq %rcx #; nframes--
jz .CP_END #; if we run out of frames, we go to the end
addq $4, %rdx #; one non-aligned byte less
cmp $16, %rdx
jne .LP_START #; if more non-aligned frames exist, we do a do-over
.CP_SSE:
#; We have reached the 16 byte aligned "buf" ("rdi") value
#; Figure out how many loops we should do
movq %rcx, %rax #; copy remaining nframes to %rax for division
shr $2,%rax #; unsigned divide by 4
jz .POST_START
#; %rax = SSE iterations
#; current maximum is at %xmm0, but we need to ..
shufps $0x00, %xmm0, %xmm0 #; shuffle "current" to all 4 FP's
#;prefetcht0 16(%rdi)
.LP_SSE:
movaps (%rdi), %xmm1
andps %xmm2, %xmm1
maxps %xmm1, %xmm0
addq $16, %rdi
subq $4, %rcx #; nframes-=4
decq %rax
jnz .LP_SSE
#; Calculate the maximum value contained in the 4 FP's in %xmm0
movaps %xmm0, %xmm1
shufps $0x4e, %xmm1, %xmm1 #; shuffle left & right pairs (1234 => 3412)
maxps %xmm1, %xmm0 #; maximums of the two pairs
movaps %xmm0, %xmm1
shufps $0xb1, %xmm1, %xmm1 #; shuffle the floats inside the two pairs (1234 => 2143)
maxps %xmm1, %xmm0
#; now every float in %xmm0 is the same value, current maximum value
#; Next we need to post-process all remaining frames
#; the remaining frame count is in %rcx
#; if no remaining frames, jump to the end
andq $3, %rcx #; nframes % 4
jz .CP_END
.POST_START:
movss (%rdi), %xmm1
andps %xmm2, %xmm1
maxss %xmm1, %xmm0
addq $4, %rdi #; buf++;
decq %rcx #; nframes--;
jnz .POST_START
.CP_END:
#; restore registers
popq %rsi
popq %rdi
popq %rcx
#; return value is in xmm0
#; return
leave
ret
#; end proc