ardour/libs/ardour/sse_avx_functions_64bit_win.s

595 lines
13 KiB
ArmAsm

/*
* Copyright (C) 2015 Paul Davis <paul@linuxaudiosystems.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#; Microsoft version of AVX sample processing functions
#; void x86_sse_avx_mix_buffers_with_gain (float *dst, float *src, unsigned int nframes, float gain);
.globl x86_sse_avx_mix_buffers_with_gain
.def x86_sse_avx_mix_buffers_with_gain; .scl 2; .type 32;
.endef
x86_sse_avx_mix_buffers_with_gain:
#; due to Microsoft calling convention
#; %rcx float *dst
#; %rdx float *src
#; %r8 unsigned int nframes
#; %xmm3 float gain
pushq %rbp
movq %rsp, %rbp
#; save the registers
pushq %rbx #; must be preserved
#; move current max to %xmm0 for convenience
movss %xmm3, %xmm0
#; if nframes == 0, go to end
cmp $0, %r8
je .MBWG_END
#; Check for alignment
movq %rcx, %rax
andq $28, %rax #; mask alignment offset
movq %rdx, %rbx
andq $28, %rbx #; mask alignment offset
cmp %rax, %rbx
jne .MBWG_NONALIGN #; if buffer are not aligned between each other, calculate manually
#; if we are aligned
cmp $0, %rbx
jz .MBWG_AVX
#; Pre-loop, we need to run 1-7 frames "manually" without
#; SSE instructions
.MBWG_PRELOOP:
#; gain is already in %xmm0
movss (%rdx), %xmm1
mulss %xmm0, %xmm1
addss (%rcx), %xmm1
movss %xmm1, (%rcx)
addq $4, %rcx #; dst++
addq $4, %rdx #; src++
decq %r8 #; nframes--
jz .MBWG_END
addq $4, %rbx
cmp $32, %rbx #; test if we've reached 32 byte alignment
jne .MBWG_PRELOOP
.MBWG_AVX:
cmp $8, %r8 #; we know it's not zero, but if it's not >=4, then
jl .MBWG_NONALIGN #; we jump straight to the "normal" code
#; set up the gain buffer (gain is already in %xmm0)
vshufps $0x00, %ymm0, %ymm0, %ymm0 #; spread single float value to the first 128 bits of ymm0 register
vperm2f128 $0x00, %ymm0, %ymm0, %ymm0 #; extend the first 128 bits of ymm0 register to higher 128 bits
.MBWG_AVXLOOP:
vmovaps (%rdx), %ymm1 #; source => xmm0
vmulps %ymm0, %ymm1, %ymm2 #; apply gain to source
vaddps (%rcx), %ymm2, %ymm1 #; mix with destination
vmovaps %ymm1, (%rcx) #; copy result to destination
addq $32, %rcx #; dst+=8
addq $32, %rdx #; src+=8
subq $8, %r8 #; nframes-=8
cmp $8, %r8
jge .MBWG_AVXLOOP
#; zero upper 128 bits of all ymm registers to proceed with SSE operations without penalties
vzeroupper
cmp $0, %r8
je .MBWG_END
#; if there are remaining frames, the nonalign code will do nicely
#; for the rest 1-7 frames.
.MBWG_NONALIGN:
#; not aligned!
#; gain is already in %xmm0
.MBWG_NONALIGNLOOP:
movss (%rdx), %xmm1
mulss %xmm0, %xmm1
addss (%rcx), %xmm1
movss %xmm1, (%rcx)
addq $4, %rcx
addq $4, %rdx
decq %r8
jnz .MBWG_NONALIGNLOOP
.MBWG_END:
popq %rbx
#; return
leave
ret
#; void x86_sse_avx_mix_buffers_no_gain (float *dst, float *src, unsigned int nframes);
.globl x86_sse_avx_mix_buffers_no_gain
.def x86_sse_avx_mix_buffers_no_gain; .scl 2; .type 32;
.endef
x86_sse_avx_mix_buffers_no_gain:
#; due to Microsoft calling convention
#; %rcx float *dst
#; %rdx float *src
#; %r8 unsigned int nframes
pushq %rbp
movq %rsp, %rbp
#; save the registers
pushq %rbx #; must be preserved
#; the real function
#; if nframes == 0, go to end
cmp $0, %r8
je .MBNG_END
#; Check for alignment
movq %rcx, %rax
andq $28, %rax #; mask alignment offset
movq %rdx, %rbx
andq $28, %rbx #; mask alignment offset
cmp %rax, %rbx
jne .MBNG_NONALIGN #; if not buffers are not aligned btween each other, calculate manually
cmp $0, %rbx
je .MBNG_AVX #; aligned at 32, rpoceed to AVX
#; Pre-loop, we need to run 1-7 frames "manually" without
#; AVX instructions
.MBNG_PRELOOP:
movss (%rdx), %xmm0
addss (%rcx), %xmm0
movss %xmm0, (%rcx)
addq $4, %rcx #; dst++
addq $4, %rdx #; src++
decq %r8 #; nframes--
jz .MBNG_END
addq $4, %rbx #; one non-aligned byte less
cmp $32, %rbx #; test if we've reached 32 byte alignment
jne .MBNG_PRELOOP
.MBNG_AVX:
cmp $8, %r8 #; if there are frames left, but less than 8
jl .MBNG_NONALIGN #; we can't run AVX
.MBNG_AVXLOOP:
vmovaps (%rdx), %ymm0 #; source => xmm0
vaddps (%rcx), %ymm0, %ymm1 #; mix with destination
vmovaps %ymm1, (%rcx) #; copy result to destination
addq $32, %rcx #; dst+=8
addq $32, %rdx #; src+=8
subq $8, %r8 #; nframes-=8
cmp $8, %r8
jge .MBNG_AVXLOOP
#; zero upper 128 bits of all ymm registers to proceed with SSE operations without penalties
vzeroupper
cmp $0, %r8
je .MBNG_END
#; if there are remaining frames, the nonalign code will do nicely
#; for the rest 1-7 frames.
.MBNG_NONALIGN:
#; not aligned!
#;
movss (%rdx), %xmm0 #; src => xmm0
addss (%rcx), %xmm0 #; xmm0 += dst
movss %xmm0, (%rcx) #; xmm0 => dst
addq $4, %rcx
addq $4, %rdx
decq %r8
jnz .MBNG_NONALIGN
.MBNG_END:
popq %rbx
#; return
leave
ret
#; void x86_sse_avx_copy_vector (float *dst, float *src, unsigned int nframes);
.globl x86_sse_avx_copy_vector
.def x86_sse_avx_copy_vector; .scl 2; .type 32;
.endef
x86_sse_avx_copy_vector:
#; due to Microsoft calling convention
#; %rcx float *dst
#; %rdx float *src
#; %r8 unsigned int nframes
pushq %rbp
movq %rsp, %rbp
#; save the registers
pushq %rbx #; must be preserved
#; the real function
#; if nframes == 0, go to end
cmp $0, %r8
je .CB_END
#; Check for alignment
movq %rcx, %rax
andq $28, %rax #; mask alignment offset
movq %rdx, %rbx
andq $28, %rbx #; mask alignment offset
cmp %rax, %rbx
jne .CB_NONALIGN #; if not buffers are not aligned btween each other, calculate manually
cmp $0, %rbx
je .CB_AVX #; aligned at 32, rpoceed to AVX
#; Pre-loop, we need to run 1-7 frames "manually" without
#; AVX instructions
.CB_PRELOOP:
movss (%rdx), %xmm0
movss %xmm0, (%rcx)
addq $4, %rcx #; dst++
addq $4, %rdx #; src++
decq %r8 #; nframes--
jz .CB_END
addq $4, %rbx #; one non-aligned byte less
cmp $32, %rbx #; test if we've reached 32 byte alignment
jne .CB_PRELOOP
.CB_AVX:
cmp $8, %r8 #; if there are frames left, but less than 8
jl .CB_NONALIGN #; we can't run AVX
.CB_AVXLOOP:
vmovaps (%rdx), %ymm0 #; source => xmm0
vmovaps %ymm0, (%rcx) #; copy result to destination
addq $32, %rcx #; dst+=8
addq $32, %rdx #; src+=8
subq $8, %r8 #; nframes-=8
cmp $8, %r8
jge .CB_AVXLOOP
#; zero upper 128 bits of all ymm registers to proceed with SSE operations without penalties
vzeroupper
cmp $0, %r8
je .CB_END
#; if there are remaining frames, the nonalign code will do nicely
#; for the rest 1-7 frames.
.CB_NONALIGN:
#; not aligned!
#;
movss (%rdx), %xmm0 #; src => xmm0
movss %xmm0, (%rcx) #; xmm0 => dst
addq $4, %rcx
addq $4, %rdx
decq %r8
jnz .CB_NONALIGN
.CB_END:
popq %rbx
#; return
leave
ret
#; void x86_sse_avx_apply_gain_to_buffer (float *buf, unsigned int nframes, float gain);
.globl x86_sse_avx_apply_gain_to_buffer
.def x86_sse_avx_apply_gain_to_buffer; .scl 2; .type 32;
.endef
x86_sse_avx_apply_gain_to_buffer:
#; due to Microsoft calling convention
#; %rcx float *buf 32(%rbp)
#; %rdx unsigned int nframes
#; %xmm2 float gain avx specific register
pushq %rbp
movq %rsp, %rbp
#; move current max to %xmm0 for convenience
movss %xmm2, %xmm0
#; the real function
#; if nframes == 0, go to end
cmp $0, %rdx
je .AG_END
#; Check for alignment
movq %rcx, %r8 #; buf => %rdx
andq $28, %r8 #; check alignment with mask 11100
jz .AG_AVX #; if buffer IS aligned
#; PRE-LOOP
#; we iterate 1-7 times, doing normal x87 float comparison
#; so we reach a 32 byte aligned "buf" (=%rdi) value
.AGLP_START:
#; Load next value from the buffer into %xmm1
movss (%rcx), %xmm1
mulss %xmm0, %xmm1
movss %xmm1, (%rcx)
#; increment buffer, decrement counter
addq $4, %rcx #; buf++;
decq %rdx #; nframes--
jz .AG_END #; if we run out of frames, we go to the end
addq $4, %r8 #; one non-aligned byte less
cmp $16, %r8
jne .AGLP_START #; if more non-aligned frames exist, we do a do-over
.AG_AVX:
#; We have reached the 32 byte aligned "buf" ("rcx") value
#; use AVX instructions
#; Figure out how many loops we should do
movq %rdx, %rax #; copy remaining nframes to %rax for division
shr $3, %rax #; unsigned divide by 8
#; %rax = AVX iterations
cmp $0, %rax
je .AGPOST_START
#; set up the gain buffer (gain is already in %xmm0)
vshufps $0x00, %ymm0, %ymm0, %ymm0 #; spread single float value to the first 128 bits of ymm0 register
vperm2f128 $0x00, %ymm0, %ymm0, %ymm0 #; extend the first 128 bits of ymm0 register to higher 128 bits
.AGLP_AVX:
vmovaps (%rcx), %ymm1
vmulps %ymm0, %ymm1, %ymm2
vmovaps %ymm2, (%rcx)
addq $32, %rcx #; buf + 8
subq $8, %rdx #; nframes-=8
decq %rax
jnz .AGLP_AVX
#; zero upper 128 bits of all ymm registers to proceed with SSE operations without penalties
vzeroupper
#; Next we need to post-process all remaining frames
#; the remaining frame count is in %rcx
cmpq $0, %rdx #;
jz .AG_END
.AGPOST_START:
movss (%rcx), %xmm1
mulss %xmm0, %xmm1
movss %xmm1, (%rcx)
#; increment buffer, decrement counter
addq $4, %rcx #; buf++;
decq %rdx #; nframes--
jnz .AGPOST_START #; if we run out of frames, we go to the end
.AG_END:
#; return
leave
ret
#; end proc
#; float x86_sse_avx_compute_peak(float *buf, long nframes, float current);
.globl x86_sse_avx_compute_peak
.def x86_sse_avx_compute_peak; .scl 2; .type 32;
.endef
x86_sse_avx_compute_peak:
#; due to Microsoft calling convention
#; %rcx float* buf 32(%rbp)
#; %rdx unsigned int nframes
#; %xmm2 float current
pushq %rbp
movq %rsp, %rbp
#; move current max to %xmm0 for convenience
movss %xmm2, %xmm0
#; if nframes == 0, go to end
cmp $0, %rdx
je .CP_END
#; create the "abs" mask in %xmm3
#; if will be used to discard sign bit
pushq $2147483647
movss (%rsp), %xmm3
addq $8, %rsp
#; Check for alignment
movq %rcx, %r8 #; buf => %rdx
andq $28, %r8 #; mask bits 1 & 2
jz .CP_AVX #; if buffer IS aligned
#; PRE-LOOP
#; we iterate 1-7 times, doing normal x87 float comparison
#; so we reach a 32 byte aligned "buf" (=%rcx) value
.LP_START:
#; Load next value from the buffer
movss (%rcx), %xmm1
andps %xmm3, %xmm1 #; mask out sign bit
maxss %xmm1, %xmm0
#; increment buffer, decrement counter
addq $4, %rcx #; buf++;
decq %rdx #; nframes--
jz .CP_END #; if we run out of frames, we go to the end
addq $4, %r8 #; one non-aligned byte less
cmp $32, %r8
jne .LP_START #; if more non-aligned frames exist, we do a do-over
.CP_AVX:
#; We have reached the 32 byte aligned "buf" ("rdi") value
#; Figure out how many loops we should do
movq %rdx, %rax #; copy remaining nframes to %rax for division
shr $3, %rax #; unsigned divide by 8
jz .POST_START
#; %rax = AVX iterations
#; current maximum is at %xmm0, but we need to broadcast it to the whole ymm0 register..
vshufps $0x00, %ymm0, %ymm0, %ymm0 #; spread single float value to the all 128 bits of xmm0 register
vperm2f128 $0x00, %ymm0, %ymm0, %ymm0 #; extend the first 128 bits of ymm0 register to higher 128 bits
#; broadcast sign mask to the whole ymm3 register
vshufps $0x00, %ymm3, %ymm3, %ymm3 #; spread single float value to the all 128 bits of xmm3 register
vperm2f128 $0x00, %ymm3, %ymm3, %ymm3 #; extend the first 128 bits of ymm3 register to higher 128 bits
.LP_AVX:
vmovaps (%rcx), %ymm1
vandps %ymm3, %ymm1, %ymm1 #; mask out sign bit
vmaxps %ymm1, %ymm0, %ymm0
addq $32, %rcx #; buf+=8
subq $8, %rdx #; nframes-=8
decq %rax
jnz .LP_AVX
#; Calculate the maximum value contained in the 4 FP's in %ymm0
vshufps $0x4e, %ymm0, %ymm0, %ymm1 #; shuffle left & right pairs (1234 => 3412) in each 128 bit half
vmaxps %ymm1, %ymm0, %ymm0 #; maximums of the four pairs, if each of 8 elements was unique, 4 unique elements left now
vshufps $0xb1, %ymm0, %ymm0, %ymm1 #; shuffle the floats inside pairs (1234 => 2143) in each 128 bit half
vmaxps %ymm1, %ymm0, %ymm0 #; maximums of the four pairs, we had up to 4 unique elements was unique, 2 unique elements left now
vperm2f128 $0x01, %ymm0, %ymm0, %ymm1 #; swap 128 bit halfs
vmaxps %ymm1, %ymm0, %ymm0 #; the result will be - all 8 elements are maximums
#; now every float in %ymm0 is the same value, current maximum value
#; Next we need to post-process all remaining frames
#; the remaining frame count is in %rcx
#; zero upper 128 bits of all ymm registers to proceed with SSE operations without penalties
vzeroupper
#; if no remaining frames, jump to the end
cmp $0, %rdx
je .CP_END
.POST_START:
movss (%rcx), %xmm1
andps %xmm3, %xmm1 #; mask out sign bit
maxss %xmm1, %xmm0
addq $4, %rcx #; buf++;
decq %rdx #; nframes--;
jnz .POST_START
.CP_END:
#; return value is in xmm0
#; return
leave
ret
#; end proc