ardour/libs/ardour/port_manager.cc

2049 lines
51 KiB
C++

/*
* Copyright (C) 2013-2019 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2015-2019 Robin Gareus <robin@gareus.org>
* Copyright (C) 2017-2018 Ben Loftis <ben@harrisonconsoles.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <algorithm>
#include <vector>
#ifdef COMPILER_MSVC
#include <ardourext/misc.h>
#include <io.h> // Microsoft's nearest equivalent to <unistd.h>
#else
#include <regex.h>
#endif
#include <glibmm/fileutils.h>
#include <glibmm/miscutils.h>
#include "pbd/error.h"
#include "pbd/strsplit.h"
#include "pbd/unwind.h"
#include "ardour/async_midi_port.h"
#include "ardour/audio_backend.h"
#include "ardour/audio_port.h"
#include "ardour/circular_buffer.h"
#include "ardour/debug.h"
#include "ardour/filesystem_paths.h"
#include "ardour/midi_port.h"
#include "ardour/midiport_manager.h"
#include "ardour/port_manager.h"
#include "ardour/profile.h"
#include "ardour/rt_tasklist.h"
#include "ardour/session.h"
#include "ardour/types_convert.h"
#include "pbd/i18n.h"
using namespace ARDOUR;
using namespace PBD;
using std::string;
using std::vector;
/* Cache dB -> coefficient calculation for dB/sec falloff.
* @n_samples engine-buffer-size
* @rate engine sample-rate
* @return coefficiant taking user preferences meter_falloff (dB/sec) into account
*/
struct FallOffCache {
FallOffCache ()
: _falloff (1.0)
, _cfg_db_s (0)
, _n_samples (0)
, _rate (0)
{
}
float calc (pframes_t n_samples, samplecnt_t rate)
{
if (n_samples == 0 || rate == 0) {
return 1.0;
}
if (Config->get_meter_falloff () != _cfg_db_s || n_samples != _n_samples || rate != _rate) {
_cfg_db_s = Config->get_meter_falloff ();
_n_samples = n_samples;
_rate = rate;
#ifdef _GNU_SOURCE
_falloff = exp10f (-0.05f * _cfg_db_s * _n_samples / _rate);
#else
_falloff = powf (10.f, -0.05f * _cfg_db_s * _n_samples / _rate);
#endif
}
return _falloff;
}
private:
float _falloff;
float _cfg_db_s;
pframes_t _n_samples;
samplecnt_t _rate;
};
static FallOffCache falloff_cache;
void
PortManager::falloff_cache_calc (pframes_t n_samples, samplecnt_t rate)
{
falloff_cache.calc (n_samples, rate);
}
PortManager::AudioInputPort::AudioInputPort (samplecnt_t sz)
: scope (AudioPortScope (new CircularSampleBuffer (sz)))
, meter (AudioPortMeter (new DPM))
{
}
void
PortManager::AudioInputPort::apply_falloff (pframes_t n_samples, samplecnt_t rate, bool reset)
{
if (reset) {
meter->reset ();
}
if (meter->level > 1e-10) {
meter->level *= falloff_cache.calc (n_samples, rate);
} else {
meter->level = 0;
}
}
void
PortManager::AudioInputPort::silence (pframes_t n_samples)
{
meter->level = 0;
scope->silence (n_samples);
}
void
PortManager::AudioInputPort::process (Sample const* buf, pframes_t n_samples, bool reset)
{
scope->write (buf, n_samples);
float level = reset ? 0 : meter->level;
level = compute_peak (buf, n_samples, level);
meter->level = std::min (level, 100.f); // cut off at +40dBFS for falloff.
meter->peak = std::max (meter->peak, level);
}
PortManager::MIDIInputPort::MIDIInputPort (samplecnt_t sz)
: monitor (MIDIPortMonitor (new CircularEventBuffer (sz)))
, meter (MIDIPortMeter (new MPM))
{
}
void
PortManager::MIDIInputPort::apply_falloff (pframes_t n_samples, samplecnt_t rate, bool reset)
{
for (size_t i = 0; i < 17; ++i) {
/* falloff */
if (!reset && meter->chn_active[i] > 1e-10) {
meter->chn_active[i] *= falloff_cache.calc (n_samples, rate);
} else {
meter->chn_active[i] = 0;
}
}
}
void
PortManager::MIDIInputPort::process_event (uint8_t const* buf, size_t size)
{
if (size == 0 || buf[0] == 0xfe) {
/* ignore active sensing */
return;
}
if ((buf[0] & 0xf0) == 0xf0) {
meter->chn_active[16] = 1.0;
} else {
int chn = (buf[0] & 0x0f);
meter->chn_active[chn] = 1.0;
}
monitor->write (buf, size);
}
PortManager::PortID::PortID (std::shared_ptr<AudioBackend> b, DataType dt, bool in, std::string const& pn)
: backend (b->name ())
, port_name (pn)
, data_type (dt)
, input (in)
{
if (dt == DataType::MIDI) {
/* Audio device name is not applicable for MIDI ports */
device_name = "";
} else if (b->use_separate_input_and_output_devices ()) {
device_name = in ? b->input_device_name () : b->output_device_name ();
} else {
device_name = b->device_name ();
}
}
PortManager::PortID::PortID (XMLNode const& node, bool old_midi_format)
: data_type (DataType::NIL)
, input (false)
{
bool err = false;
if (node.name () != (old_midi_format ? "port" : "PortID")) {
throw failed_constructor ();
}
err |= !node.get_property ("backend", backend);
err |= !node.get_property ("input", input);
if (old_midi_format) {
err |= !node.get_property ("name", port_name);
data_type = DataType::MIDI;
device_name = "";
} else {
err |= !node.get_property ("device-name", device_name);
err |= !node.get_property ("port-name", port_name);
err |= !node.get_property ("data-type", data_type);
}
if (err) {
throw failed_constructor ();
}
}
XMLNode&
PortManager::PortID::state () const
{
XMLNode* node = new XMLNode ("PortID");
node->set_property ("backend", backend);
node->set_property ("device-name", device_name);
node->set_property ("port-name", port_name);
node->set_property ("data-type", data_type);
node->set_property ("input", input);
return *node;
}
PortManager::PortMetaData::PortMetaData (XMLNode const& node)
{
bool err = false;
err |= !node.get_property ("pretty-name", pretty_name);
err |= !node.get_property ("properties", properties);
if (err) {
throw failed_constructor ();
}
}
/* ****************************************************************************/
PortManager::PortManager ()
: _ports (new Ports)
, _port_remove_in_progress (false)
, _port_deletions_pending (8192) /* ick, arbitrary sizing */
, _midi_info_dirty (true)
, _audio_input_ports (new AudioInputPorts)
, _midi_input_ports (new MIDIInputPorts)
{
_reset_meters.store (1);
load_port_info ();
}
void
PortManager::clear_pending_port_deletions ()
{
Port* p;
DEBUG_TRACE (DEBUG::Ports, string_compose ("pending port deletions: %1\n", _port_deletions_pending.read_space ()));
while (_port_deletions_pending.read (&p, 1) == 1) {
delete p;
}
}
void
PortManager::remove_session_ports ()
{
/* make sure that JACK callbacks that will be invoked as we cleanup
* ports know that they have nothing to do.
*/
PBD::Unwinder<bool> uw (_port_remove_in_progress, true);
/* process lock MUST be held by caller */
{
RCUWriter<Ports> writer (_ports);
std::shared_ptr<Ports> ps = writer.get_copy ();
for (auto i = ps->begin (); i != ps->end (); ) {
std::shared_ptr<Port> port = i->second;
if (i->second->flags () & TransportMasterPort) {
++i;
} else {
i = ps->erase (i);
}
}
}
/* clear dead wood list in RCU */
_ports.flush ();
/* clear out pending port deletion list. we know this is safe because
* the auto connect thread in Session is already dead when this is
* done. It doesn't use shared_ptr<Port> anyway.
*/
_port_deletions_pending.reset ();
}
string
PortManager::make_port_name_relative (const string& portname) const
{
if (!_backend) {
return portname;
}
string::size_type colon = portname.find (':');
if (colon == string::npos) {
return portname;
}
if (portname.substr (0, colon) == _backend->my_name ()) {
return portname.substr (colon + 1);
}
return portname;
}
string
PortManager::make_port_name_non_relative (const string& portname) const
{
string str;
if (portname.find_first_of (':') != string::npos) {
return portname;
}
str = _backend->my_name ();
str += ':';
str += portname;
return str;
}
std::string
PortManager::get_pretty_name_by_name (const std::string& portname) const
{
PortEngine::PortHandle ph = _backend->get_port_by_name (portname);
if (ph) {
std::string value;
std::string type;
if (0 == _backend->get_port_property (ph, "http://jackaudio.org/metadata/pretty-name", value, type)) {
return value;
}
}
return string ();
}
std::string
PortManager::get_hardware_port_name_by_name (const std::string& portname) const
{
PortEngine::PortHandle ph = _backend->get_port_by_name (portname);
if (ph) {
std::string value;
std::string type;
if (0 == _backend->get_port_property (ph, "http://ardour.org/metadata/hardware-port-name", value, type)) {
return value;
} else {
return short_port_name_from_port_name (portname);
}
}
return string ();
}
bool
PortManager::port_is_mine (const string& portname) const
{
if (!_backend) {
return true;
}
string self = _backend->my_name ();
if (portname.find_first_of (':') != string::npos) {
if (portname.substr (0, self.length ()) != self) {
return false;
}
}
return true;
}
bool
PortManager::port_is_physical (const std::string& portname) const
{
if (!_backend) {
return false;
}
PortEngine::PortHandle ph = _backend->get_port_by_name (portname);
if (!ph) {
return false;
}
return _backend->port_is_physical (ph);
}
void
PortManager::filter_midi_ports (vector<string>& ports, MidiPortFlags include, MidiPortFlags exclude)
{
if (!include && !exclude) {
return;
}
Glib::Threads::Mutex::Lock lm (_port_info_mutex);
fill_midi_port_info_locked ();
for (vector<string>::iterator si = ports.begin (); si != ports.end ();) {
PortInfo::iterator x;
for (x = _port_info.begin (); x != _port_info.end (); ++x) {
if (x->first.data_type != DataType::MIDI) {
continue;
}
if (x->first.backend != _backend->name ()) {
continue;
}
if (x->first.port_name == *si) {
break;
}
}
if (x == _port_info.end ()) {
++si;
continue;
}
if (include) {
if ((x->second.properties & include) != include) {
/* properties do not include requested ones */
si = ports.erase (si);
continue;
}
}
if (exclude) {
if ((x->second.properties & exclude)) {
/* properties include ones to avoid */
si = ports.erase (si);
continue;
}
}
++si;
}
}
void
PortManager::get_physical_outputs (DataType type, std::vector<std::string>& s, MidiPortFlags include, MidiPortFlags exclude)
{
if (!_backend) {
s.clear ();
return;
}
_backend->get_physical_outputs (type, s);
filter_midi_ports (s, include, exclude);
}
void
PortManager::get_physical_inputs (DataType type, std::vector<std::string>& s, MidiPortFlags include, MidiPortFlags exclude)
{
if (!_backend) {
s.clear ();
return;
}
_backend->get_physical_inputs (type, s);
filter_midi_ports (s, include, exclude);
}
ChanCount
PortManager::n_physical_outputs () const
{
if (!_backend) {
return ChanCount::ZERO;
}
return _backend->n_physical_outputs ();
}
ChanCount
PortManager::n_physical_inputs () const
{
if (!_backend) {
return ChanCount::ZERO;
}
return _backend->n_physical_inputs ();
}
/** @param name Full or short name of port
* @return Corresponding Port or 0.
*/
std::shared_ptr<Port>
PortManager::get_port_by_name (const string& portname)
{
if (!_backend) {
return std::shared_ptr<Port> ();
}
if (!port_is_mine (portname)) {
/* not an ardour port */
return std::shared_ptr<Port> ();
}
std::shared_ptr<Ports const> pr = _ports.reader ();
std::string rel = make_port_name_relative (portname);
Ports::const_iterator x = pr->find (rel);
if (x != pr->end ()) {
/* its possible that the port was renamed by some 3rd party and
* we don't know about it. check for this (the check is quick
* and cheap), and if so, rename the port (which will alter
* the port map as a side effect).
*/
const std::string check = make_port_name_relative (_backend->get_port_name (x->second->port_handle ()));
if (check != rel) {
x->second->set_name (check);
}
return x->second;
}
return std::shared_ptr<Port> ();
}
void
PortManager::port_renamed (const std::string& old_relative_name, const std::string& new_relative_name)
{
RCUWriter<Ports> writer (_ports);
std::shared_ptr<Ports> p = writer.get_copy ();
Ports::iterator x = p->find (old_relative_name);
if (x != p->end ()) {
std::shared_ptr<Port> port = x->second;
p->erase (x);
p->insert (make_pair (new_relative_name, port));
}
}
int
PortManager::get_ports (DataType type, PortList& pl)
{
std::shared_ptr<Ports const> plist = _ports.reader ();
for (auto const& p : *plist) {
if (p.second->type () == type) {
pl.push_back (p.second);
}
}
return pl.size ();
}
int
PortManager::get_ports (const string& port_name_pattern, DataType type, PortFlags flags, vector<string>& s)
{
s.clear ();
if (!_backend) {
return 0;
}
return _backend->get_ports (port_name_pattern, type, flags, s);
}
size_t
PortManager::session_port_count () const
{
size_t cnt = 0;
for (auto const& p : *_ports.reader ()) {
if (p.second->flags () & TransportSyncPort) {
continue;
}
++cnt;
}
return cnt;
}
void
PortManager::port_registration_failure (const std::string& portname)
{
if (!_backend) {
return;
}
string full_portname = _backend->my_name ();
full_portname += ':';
full_portname += portname;
PortEngine::PortHandle p = _backend->get_port_by_name (full_portname);
string reason;
if (p) {
reason = string_compose (_("a port with the name \"%1\" already exists: check for duplicated track/bus names"), portname);
} else {
reason = string_compose (_("No more ports are available. You will need to stop %1 and restart with more ports if you need this many tracks."), PROGRAM_NAME);
}
throw PortRegistrationFailure (string_compose (_("AudioEngine: cannot register port \"%1\": %2"), portname, reason).c_str ());
}
struct PortDeleter {
void operator() (Port* p)
{
AudioEngine::instance ()->add_pending_port_deletion (p);
}
};
std::shared_ptr<Port>
PortManager::register_port (DataType dtype, const string& portname, bool input, bool async, PortFlags flags)
{
std::shared_ptr<Port> newport;
/* limit the possible flags that can be set */
flags = PortFlags (flags & (Hidden | Shadow | IsTerminal | TransportSyncPort));
try {
if (dtype == DataType::AUDIO) {
DEBUG_TRACE (DEBUG::Ports, string_compose ("registering AUDIO port %1, input %2\n",
portname, input));
newport.reset (new AudioPort (portname, PortFlags ((input ? IsInput : IsOutput) | flags)),
PortDeleter ());
} else if (dtype == DataType::MIDI) {
if (async) {
DEBUG_TRACE (DEBUG::Ports, string_compose ("registering ASYNC MIDI port %1, input %2\n",
portname, input));
newport.reset (new AsyncMIDIPort (portname, PortFlags ((input ? IsInput : IsOutput) | flags)),
PortDeleter ());
_midi_info_dirty = true;
} else {
DEBUG_TRACE (DEBUG::Ports, string_compose ("registering MIDI port %1, input %2\n",
portname, input));
newport.reset (new MidiPort (portname, PortFlags ((input ? IsInput : IsOutput) | flags)),
PortDeleter ());
}
} else {
throw PortRegistrationFailure (string_compose ("unable to create port '%1': %2", portname, _("(unknown type)")));
}
newport->set_buffer_size (AudioEngine::instance ()->samples_per_cycle ());
RCUWriter<Ports> writer (_ports);
std::shared_ptr<Ports> ps = writer.get_copy ();
ps->insert (make_pair (make_port_name_relative (portname), newport));
/* writer goes out of scope, forces update */
}
catch (PortRegistrationFailure& err) {
throw err;
} catch (std::exception& e) {
throw PortRegistrationFailure (string_compose ("unable to create port '%1': %2", portname, e.what ()).c_str ());
} catch (...) {
throw PortRegistrationFailure (string_compose ("unable to create port '%1': %2", portname, _("(unknown error)")));
}
DEBUG_TRACE (DEBUG::Ports, string_compose ("\t%2 port registration success, ports now = %1\n", _ports.reader ()->size (), this));
return newport;
}
std::shared_ptr<Port>
PortManager::register_input_port (DataType type, const string& portname, bool async, PortFlags extra_flags)
{
return register_port (type, portname, true, async, extra_flags);
}
std::shared_ptr<Port>
PortManager::register_output_port (DataType type, const string& portname, bool async, PortFlags extra_flags)
{
return register_port (type, portname, false, async, extra_flags);
}
int
PortManager::unregister_port (std::shared_ptr<Port> port)
{
/* This is a little subtle. We do not call the backend's port
* unregistration code from here. That is left for the Port
* destructor. We are trying to drop references to the Port object
* here, so that its destructor will run and it will unregister itself.
*/
/* caller must hold process lock */
{
RCUWriter<Ports> writer (_ports);
std::shared_ptr<Ports> ps = writer.get_copy ();
Ports::iterator x = ps->find (make_port_name_relative (port->name ()));
if (x != ps->end ()) {
DEBUG_TRACE (DEBUG::Ports, string_compose ("removing %1 from port map (uc=%2)\n", port->name (), port.use_count ()));
ps->erase (x);
}
/* writer goes out of scope, forces update */
}
_ports.flush ();
return 0;
}
bool
PortManager::connected (const string& port_name)
{
if (!_backend) {
return false;
}
PortEngine::PortHandle handle = _backend->get_port_by_name (port_name);
if (!handle) {
return false;
}
return _backend->connected (handle);
}
bool
PortManager::physically_connected (const string& port_name)
{
if (!_backend) {
return false;
}
PortEngine::PortHandle handle = _backend->get_port_by_name (port_name);
if (!handle) {
return false;
}
return _backend->physically_connected (handle);
}
int
PortManager::get_connections (const string& port_name, std::vector<std::string>& s)
{
if (!_backend) {
s.clear ();
return 0;
}
PortEngine::PortHandle handle = _backend->get_port_by_name (port_name);
if (!handle) {
s.clear ();
return 0;
}
return _backend->get_connections (handle, s);
}
int
PortManager::connect (const string& source, const string& destination)
{
int ret;
string s = make_port_name_non_relative (source);
string d = make_port_name_non_relative (destination);
std::shared_ptr<Port> src = get_port_by_name (s);
std::shared_ptr<Port> dst = get_port_by_name (d);
if (src) {
ret = src->connect (d);
} else if (dst) {
ret = dst->connect (s);
} else {
/* neither port is known to us ...hand-off to the PortEngine
*/
if (_backend) {
ret = _backend->connect (s, d);
} else {
ret = -1;
}
}
if (ret > 0) {
/* already exists - no error, no warning */
} else if (ret < 0) {
error << string_compose (_("AudioEngine: cannot connect %1 (%2) to %3 (%4)"),
source, s, destination, d)
<< endmsg;
}
return ret;
}
int
PortManager::disconnect (const string& source, const string& destination)
{
int ret;
string s = make_port_name_non_relative (source);
string d = make_port_name_non_relative (destination);
std::shared_ptr<Port> src = get_port_by_name (s);
std::shared_ptr<Port> dst = get_port_by_name (d);
if (src) {
ret = src->disconnect (d);
} else if (dst) {
ret = dst->disconnect (s);
} else {
/* neither port is known to us ...hand-off to the PortEngine
*/
if (_backend) {
ret = _backend->disconnect (s, d);
} else {
ret = -1;
}
}
return ret;
}
int
PortManager::disconnect (std::shared_ptr<Port> port)
{
return port->disconnect_all ();
}
int
PortManager::disconnect (std::string const& name)
{
PortEngine::PortHandle ph = _backend->get_port_by_name (name);
if (ph) {
return _backend->disconnect_all (ph);
}
return -2;
}
int
PortManager::reestablish_ports ()
{
_midi_info_dirty = true;
Ports::const_iterator i;
std::shared_ptr<Ports const> p = _ports.reader ();
DEBUG_TRACE (DEBUG::Ports, string_compose ("reestablish %1 ports\n", p->size ()));
for (i = p->begin (); i != p->end (); ++i) {
if (i->second->reestablish ()) {
error << string_compose (_("Re-establising port %1 failed"), i->second->name ()) << endmsg;
std::cerr << string_compose (_("Re-establising port %1 failed"), i->second->name ()) << std::endl;
break;
}
}
if (i != p->end ()) {
/* failed */
remove_session_ports ();
return -1;
}
if (!_backend->info ().already_configured ()) {
std::vector<std::string> port_names;
get_physical_inputs (DataType::AUDIO, port_names);
set_pretty_names (port_names, DataType::AUDIO, true);
port_names.clear ();
get_physical_outputs (DataType::AUDIO, port_names);
set_pretty_names (port_names, DataType::AUDIO, false);
port_names.clear ();
get_physical_inputs (DataType::MIDI, port_names);
set_pretty_names (port_names, DataType::MIDI, true);
port_names.clear ();
get_physical_outputs (DataType::MIDI, port_names);
set_pretty_names (port_names, DataType::MIDI, false);
}
if (Config->get_work_around_jack_no_copy_optimization () && AudioEngine::instance ()->current_backend_name () == X_("JACK")) {
port_engine ().register_port (X_("physical_audio_input_monitor_enable"), DataType::AUDIO, ARDOUR::PortFlags (IsInput | IsTerminal | Hidden));
port_engine ().register_port (X_("physical_midi_input_monitor_enable"), DataType::MIDI, ARDOUR::PortFlags (IsInput | IsTerminal | Hidden));
}
update_input_ports (true);
return 0;
}
void
PortManager::set_pretty_names (std::vector<std::string> const& port_names, DataType dt, bool input)
{
Glib::Threads::Mutex::Lock lm (_port_info_mutex);
for (std::vector<std::string>::const_iterator p = port_names.begin (); p != port_names.end (); ++p) {
if (port_is_mine (*p)) {
continue;
}
PortEngine::PortHandle ph = _backend->get_port_by_name (*p);
if (!ph) {
continue;
}
PortID pid (_backend, dt, input, *p);
PortInfo::iterator x = _port_info.find (pid);
if (x == _port_info.end ()) {
continue;
}
_backend->set_port_property (ph, "http://jackaudio.org/metadata/pretty-name", x->second.pretty_name, string ());
}
}
int
PortManager::reconnect_ports ()
{
std::shared_ptr<Ports const> p = _ports.reader ();
/* re-establish connections */
DEBUG_TRACE (DEBUG::Ports, string_compose ("reconnect %1 ports\n", p->size ()));
Session* s = AudioEngine::instance ()->session ();
if (s && s->master_out() && !s->master_out ()->output()->has_ext_connection()) {
s->auto_connect_master_bus ();
}
if (s && s->monitor_out() && !s->monitor_out ()->output()->has_ext_connection()) {
s->auto_connect_monitor_bus ();
}
if (s && s->click_io() && !s->click_io ()->has_ext_connection()) {
s->auto_connect_io (s->click_io());
}
for (auto const& i : *p) {
if (i.second->reconnect ()) {
PortConnectedOrDisconnected (i.second, i.first, std::weak_ptr<Port> (), "", false);
}
}
if (Config->get_work_around_jack_no_copy_optimization () && AudioEngine::instance ()->current_backend_name () == X_("JACK")) {
std::string const audio_port = AudioEngine::instance ()->make_port_name_non_relative (X_("physical_audio_input_monitor_enable"));
std::string const midi_port = AudioEngine::instance ()->make_port_name_non_relative (X_("physical_midi_input_monitor_enable"));
std::vector<std::string> audio_ports;
std::vector<std::string> midi_ports;
get_physical_inputs (DataType::AUDIO, audio_ports);
get_physical_inputs (DataType::MIDI, midi_ports);
for (std::vector<std::string>::iterator p = audio_ports.begin (); p != audio_ports.end (); ++p) {
port_engine ().connect (*p, audio_port);
}
for (std::vector<std::string>::iterator p = midi_ports.begin (); p != midi_ports.end (); ++p) {
port_engine ().connect (*p, midi_port);
}
}
return 0;
}
void
PortManager::connect_callback (const string& a, const string& b, bool conn)
{
DEBUG_TRACE (DEBUG::BackendCallbacks, string_compose (X_("connect callback %1 + %2 connected ? %3\n"), a, b, conn));
std::shared_ptr<Port> port_a;
std::shared_ptr<Port> port_b;
Ports::const_iterator x;
std::shared_ptr<Ports const> pr = _ports.reader ();
x = pr->find (make_port_name_relative (a));
if (x != pr->end ()) {
port_a = x->second;
}
x = pr->find (make_port_name_relative (b));
if (x != pr->end ()) {
port_b = x->second;
}
if (conn) {
if (port_a && !port_b) {
port_a->increment_external_connections ();
} else if (port_b && !port_a) {
port_b->increment_external_connections ();
} else if (port_a && port_b) {
port_a->increment_internal_connections ();
port_a->increment_internal_connections ();
}
} else {
if (port_a && !port_b) {
port_a->decrement_external_connections ();
} else if (port_b && !port_a) {
port_b->decrement_external_connections ();
} else if (port_a && port_b) {
port_a->decrement_internal_connections ();
port_a->decrement_internal_connections ();
}
}
PortConnectedOrDisconnected (
port_a, a,
port_b, b,
conn); /* EMIT SIGNAL */
}
void
PortManager::registration_callback ()
{
DEBUG_TRACE (DEBUG::BackendCallbacks, "port registration callback\n");
if (_port_remove_in_progress) {
return;
}
update_input_ports (false);
PortRegisteredOrUnregistered (); /* EMIT SIGNAL */
}
struct MIDIConnectCall {
MIDIConnectCall (std::vector<std::string> const& pl)
: port_list (pl)
{
}
std::vector<std::string> port_list;
};
static void*
_midi_connect (void* arg)
{
MIDIConnectCall* mcl = static_cast<MIDIConnectCall*> (arg);
std::string const our_name = AudioEngine::instance ()->make_port_name_non_relative (X_("physical_midi_input_monitor_enable"));
for (vector<string>::const_iterator p = mcl->port_list.begin (); p != mcl->port_list.end (); ++p) {
AudioEngine::instance ()->connect (*p, our_name);
}
delete mcl;
return 0;
}
void
PortManager::update_input_ports (bool clear)
{
std::vector<std::string> audio_ports;
std::vector<std::string> midi_ports;
std::vector<std::string> new_audio;
std::vector<std::string> old_audio;
std::vector<std::string> new_midi;
std::vector<std::string> old_midi;
get_physical_inputs (DataType::AUDIO, audio_ports);
get_physical_inputs (DataType::MIDI, midi_ports);
if (clear) {
new_audio = audio_ports;
new_midi = midi_ports;
_monitor_port.clear_ports (true);
} else {
std::shared_ptr<AudioInputPorts const> aip = _audio_input_ports.reader ();
/* find new audio ports */
for (std::vector<std::string>::iterator p = audio_ports.begin (); p != audio_ports.end (); ++p) {
if (port_is_mine (*p) || !_backend->get_port_by_name (*p)) {
continue;
}
if (aip->find (*p) == aip->end ()) {
new_audio.push_back (*p);
}
}
/* find stale audio ports */
for (auto const& p : *aip) {
if (std::find (audio_ports.begin (), audio_ports.end (), p.first) == audio_ports.end ()) {
old_audio.push_back (p.first);
}
}
std::shared_ptr<MIDIInputPorts const> mip = _midi_input_ports.reader ();
/* find new MIDI ports */
for (std::vector<std::string>::iterator p = midi_ports.begin (); p != midi_ports.end (); ++p) {
if (port_is_mine (*p) || !_backend->get_port_by_name (*p)) {
continue;
}
#ifdef HAVE_ALSA
if ((*p).find (X_("Midi Through")) != string::npos || (*p).find (X_("Midi-Through")) != string::npos) {
continue;
}
#endif
if (mip->find (*p) == mip->end ()) {
new_midi.push_back (*p);
}
}
/* find stale audio ports */
for (auto const& p : *mip) {
if (std::find (midi_ports.begin (), midi_ports.end (), p.first) == midi_ports.end ()) {
old_midi.push_back (p.first);
}
}
}
if (!new_audio.empty () || !old_audio.empty () || clear) {
RCUWriter<AudioInputPorts> apwr (_audio_input_ports);
std::shared_ptr<AudioInputPorts> apw = apwr.get_copy ();
if (clear) {
apw->clear ();
} else {
for (std::vector<std::string>::const_iterator p = old_audio.begin (); p != old_audio.end (); ++p) {
apw->erase (*p);
_monitor_port.remove_port (*p, true);
}
}
for (std::vector<std::string>::const_iterator p = new_audio.begin (); p != new_audio.end (); ++p) {
if (port_is_mine (*p) || !_backend->get_port_by_name (*p)) {
continue;
}
apw->insert (make_pair (*p, AudioInputPort (24288))); // 2^19 ~ 1MB / port
}
}
std::vector<std::string> physical_midi_connection_list;
if (!new_midi.empty () || !old_midi.empty () || clear) {
RCUWriter<MIDIInputPorts> mpwr (_midi_input_ports);
std::shared_ptr<MIDIInputPorts> mpw = mpwr.get_copy ();
if (clear) {
mpw->clear ();
} else {
for (std::vector<std::string>::const_iterator p = old_midi.begin (); p != old_midi.end (); ++p) {
mpw->erase (*p);
}
}
for (std::vector<std::string>::const_iterator p = new_midi.begin (); p != new_midi.end (); ++p) {
if (port_is_mine (*p) || !_backend->get_port_by_name (*p)) {
continue;
}
#ifdef HAVE_ALSA
if ((*p).find (X_("Midi Through")) != string::npos || (*p).find (X_("Midi-Through")) != string::npos) {
continue;
}
#endif
mpw->insert (make_pair (*p, MIDIInputPort (32)));
if (Config->get_work_around_jack_no_copy_optimization () && AudioEngine::instance ()->current_backend_name () == X_("JACK")) {
physical_midi_connection_list.push_back (*p);
}
}
}
if (clear) {
/* don't send notification for initial setup.
* Physical I/O is initially connected in
* reconnect_ports(), it is too early to
* do this when called from ::reestablish_ports()
* "JACK: Cannot connect ports owned by inactive clients"
*/
return;
}
if (!physical_midi_connection_list.empty ()) {
/* handle hotplug, connect in bg thread, because
* "JACK: Cannot callback the server in notification thread!"
*/
pthread_t thread;
MIDIConnectCall* mcl = new MIDIConnectCall (physical_midi_connection_list);
pthread_create_and_store ("midi-connect", &thread, _midi_connect, mcl);
pthread_detach (thread);
}
if (!old_audio.empty ()) {
PhysInputChanged (DataType::AUDIO, old_audio, false);
}
if (!old_midi.empty ()) {
PhysInputChanged (DataType::MIDI, old_midi, false);
}
if (!new_audio.empty ()) {
PhysInputChanged (DataType::AUDIO, new_audio, true);
}
if (!new_midi.empty ()) {
PhysInputChanged (DataType::MIDI, new_midi, true);
}
}
bool
PortManager::can_request_input_monitoring () const
{
if (!_backend) {
return false;
}
return _backend->can_monitor_input ();
}
void
PortManager::request_input_monitoring (const string& name, bool yn) const
{
if (!_backend) {
return;
}
PortEngine::PortHandle ph = _backend->get_port_by_name (name);
if (ph) {
_backend->request_input_monitoring (ph, yn);
}
}
void
PortManager::ensure_input_monitoring (const string& name, bool yn) const
{
if (!_backend) {
return;
}
PortEngine::PortHandle ph = _backend->get_port_by_name (name);
if (ph) {
_backend->ensure_input_monitoring (ph, yn);
}
}
uint32_t
PortManager::port_name_size () const
{
if (!_backend) {
return 0;
}
return _backend->port_name_size ();
}
string
PortManager::my_name () const
{
if (!_backend) {
return string ();
}
return _backend->my_name ();
}
int
PortManager::graph_order_callback ()
{
DEBUG_TRACE (DEBUG::BackendCallbacks, "graph order callback\n");
if (!_port_remove_in_progress) {
GraphReordered (); /* EMIT SIGNAL */
}
return 0;
}
void
PortManager::cycle_start (pframes_t nframes, Session* s)
{
Port::set_global_port_buffer_offset (0);
Port::set_cycle_samplecnt (nframes);
_cycle_ports = _ports.reader ();
/* pre-calc/cache value */
falloff_cache.calc (nframes, s ? s->nominal_sample_rate () : 0);
/* TODO optimize
* - when speed == 1.0, the resampler copies data without processing
* it may (or may not) be more efficient to just run all in sequence.
*
* - single sequential task for 'lightweight' tasks would make sense
* (run it in parallel with 'heavy' resampling.
* * output ports (sends_output()) only set a flag
* * midi-ports only scale event timestamps
*
* - a threshold parallel vs searial processing may be appropriate.
* amount of work (how many connected ports are there, how
* many resamplers need to run) vs. available CPU cores and semaphore
* synchronization overhead.
*
* - input ports: it would make sense to resample each input only once
* (rather than resample into each ardour-owned input port).
* A single external source-port may be connected to many ardour
* input-ports. Currently re-sampling is per input.
*/
std::shared_ptr<RTTaskList> tl;
if (s) {
tl = s->rt_tasklist ();
}
if (tl && fabs (Port::resample_ratio ()) != 1.0) {
for (auto const& p : *_cycle_ports) {
if (!(p.second->flags () & TransportSyncPort)) {
tl->push_back (boost::bind (&Port::cycle_start, p.second, nframes));
}
}
tl->push_back (boost::bind (&PortManager::run_input_meters, this, nframes, s ? s->nominal_sample_rate () : 0));
tl->process ();
} else {
for (auto const& p : *_cycle_ports) {
if (!(p.second->flags () & TransportSyncPort)) {
p.second->cycle_start (nframes);
}
}
run_input_meters (nframes, s ? s->nominal_sample_rate () : 0);
}
}
void
PortManager::cycle_end (pframes_t nframes, Session* s)
{
// see optimzation note in ::cycle_start()
std::shared_ptr<RTTaskList> tl;
if (s) {
tl = s->rt_tasklist ();
}
if (tl && fabs (Port::resample_ratio ()) != 1.0) {
for (auto const& p : *_cycle_ports) {
if (!(p.second->flags () & TransportSyncPort)) {
tl->push_back (boost::bind (&Port::cycle_end, p.second, nframes));
}
}
tl->process ();
} else {
for (auto const& p : *_cycle_ports) {
if (!(p.second->flags () & TransportSyncPort)) {
p.second->cycle_end (nframes);
}
}
}
for (auto const& p : *_cycle_ports) {
/* AudioEngine::split_cycle flushes buffers until Port::port_offset.
* Now only flush remaining events (after Port::port_offset) */
p.second->flush_buffers (nframes * Port::resample_ratio () - Port::port_offset ());
}
_cycle_ports.reset ();
/* we are done */
}
void
PortManager::silence (pframes_t nframes, Session* s)
{
for (auto const& p : *_cycle_ports) {
if (s && p.second == s->mtc_output_port ()) {
continue;
}
if (s && p.second == s->midi_clock_output_port ()) {
continue;
}
if (s && p.second == s->ltc_output_port ()) {
continue;
}
if (std::dynamic_pointer_cast<AsyncMIDIPort> (p.second)) {
continue;
}
if (p.second->sends_output ()) {
p.second->get_buffer (nframes).silence (nframes);
}
}
}
void
PortManager::reinit (bool with_ratio)
{
for (auto const& p : *_ports.reader ()) {
p.second->reinit (with_ratio);
}
}
void
PortManager::silence_outputs (pframes_t nframes)
{
std::vector<std::string> port_names;
if (get_ports ("", DataType::AUDIO, IsOutput, port_names)) {
for (std::vector<std::string>::iterator p = port_names.begin (); p != port_names.end (); ++p) {
if (!port_is_mine (*p)) {
continue;
}
PortEngine::PortHandle ph = _backend->get_port_by_name (*p);
if (!ph) {
continue;
}
void* buf = _backend->get_buffer (ph, nframes);
if (!buf) {
continue;
}
memset (buf, 0, sizeof (float) * nframes);
}
}
if (get_ports ("", DataType::MIDI, IsOutput, port_names)) {
for (std::vector<std::string>::iterator p = port_names.begin (); p != port_names.end (); ++p) {
if (!port_is_mine (*p)) {
continue;
}
PortEngine::PortHandle ph = _backend->get_port_by_name (*p);
if (!ph) {
continue;
}
void* buf = _backend->get_buffer (ph, nframes);
if (!buf) {
continue;
}
_backend->midi_clear (buf);
}
}
}
void
PortManager::check_monitoring ()
{
for (auto const& p : *_cycle_ports) {
bool x;
if (p.second->last_monitor () != (x = p.second->monitoring_input ())) {
p.second->set_last_monitor (x);
/* XXX I think this is dangerous, due to
a likely mutex in the signal handlers ...
*/
p.second->MonitorInputChanged (x); /* EMIT SIGNAL */
}
}
}
void
PortManager::cycle_end_fade_out (gain_t base_gain, gain_t gain_step, pframes_t nframes, Session* s)
{
// see optimzation note in ::cycle_start()
std::shared_ptr<RTTaskList> tl;
if (s) {
tl = s->rt_tasklist ();
}
if (tl && fabs (Port::resample_ratio ()) != 1.0) {
for (auto const& p : *_cycle_ports) {
if (!(p.second->flags () & TransportSyncPort)) {
tl->push_back (boost::bind (&Port::cycle_end, p.second, nframes));
}
}
tl->process ();
} else {
for (auto const& p : *_cycle_ports) {
if (!(p.second->flags () & TransportSyncPort)) {
p.second->cycle_end (nframes);
}
}
}
for (auto const& p : *_cycle_ports) {
p.second->flush_buffers (nframes);
if (p.second->sends_output ()) {
std::shared_ptr<AudioPort> ap = std::dynamic_pointer_cast<AudioPort> (p.second);
if (ap) {
Sample* s = ap->engine_get_whole_audio_buffer ();
gain_t g = base_gain;
for (pframes_t n = 0; n < nframes; ++n) {
*s++ *= g;
g -= gain_step;
}
}
}
}
_cycle_ports.reset ();
/* we are done */
}
PortEngine&
PortManager::port_engine ()
{
assert (_backend);
return *_backend;
}
bool
PortManager::port_is_control_only (std::string const& name)
{
static regex_t compiled_pattern;
static string pattern;
if (pattern.empty ()) {
/* This is a list of regular expressions that match ports
* related to physical MIDI devices that we do not want to
* expose as normal physical ports.
*/
const char* const control_only_ports[] = {
X_(".*Ableton Push.*"),
X_(".*FaderPort .*"),
X_(".*FaderPort8 .*"),
X_(".*FaderPort16 .*"),
X_(".*FaderPort2 .*"),
X_(".*US-2400 .*"),
X_(".*Mackie .*"),
X_(".*MIDI Control .*"),
X_(".*Console1 .*"),
};
pattern = "(";
for (size_t n = 0; n < sizeof (control_only_ports) / sizeof (control_only_ports[0]); ++n) {
if (n > 0) {
pattern += '|';
}
pattern += control_only_ports[n];
}
pattern += ')';
regcomp (&compiled_pattern, pattern.c_str (), REG_EXTENDED | REG_NOSUB);
}
return regexec (&compiled_pattern, name.c_str (), 0, 0, 0) == 0;
}
static bool
ends_with (std::string const& str, std::string const& end)
{
const size_t str_size = str.size ();
const size_t end_size = end.size ();
if (str_size < end_size) {
return false;
}
return 0 == str.compare (str_size - end_size, end_size, end);
}
bool
PortManager::port_is_virtual_piano (std::string const& name)
{
return ends_with (name, X_(":x-virtual-keyboard"));
}
bool
PortManager::port_is_physical_input_monitor_enable (std::string const& name)
{
if (Config->get_work_around_jack_no_copy_optimization () && AudioEngine::instance ()->current_backend_name () == X_("JACK")) {
if (ends_with (name, X_(":physical_midi_input_monitor_enable"))) {
return true;
}
if (ends_with (name, X_(":physical_audio_input_monitor_enable"))) {
return true;
}
}
return false;
}
MidiPortFlags
PortManager::midi_port_metadata (std::string const& name)
{
Glib::Threads::Mutex::Lock lm (_port_info_mutex);
fill_midi_port_info_locked ();
PortID pid (_backend, DataType::MIDI, true, name);
PortInfo::iterator x = _port_info.find (pid);
if (x != _port_info.end ()) {
return x->second.properties;
}
pid.input = false;
x = _port_info.find (pid);
if (x != _port_info.end ()) {
return x->second.properties;
}
return MidiPortFlags (0);
}
void
PortManager::get_configurable_midi_ports (vector<string>& copy, bool for_input)
{
if (!_backend) {
return;
}
{
Glib::Threads::Mutex::Lock lm (_port_info_mutex);
fill_midi_port_info_locked ();
}
PortFlags flags = PortFlags ((for_input ? IsOutput : IsInput) | IsPhysical);
std::vector<string> ports;
AudioEngine::instance ()->get_ports (string (), DataType::MIDI, flags, ports);
for (vector<string>::iterator p = ports.begin (); p != ports.end (); ++p) {
if (port_is_mine (*p) && !port_is_virtual_piano (*p)) {
continue;
}
if ((*p).find (X_("Midi Through")) != string::npos || (*p).find (X_("Midi-Through")) != string::npos) {
continue;
}
copy.push_back (*p);
}
}
void
PortManager::get_midi_selection_ports (vector<string>& copy)
{
Glib::Threads::Mutex::Lock lm (_port_info_mutex);
fill_midi_port_info_locked ();
for (PortInfo::const_iterator x = _port_info.begin (); x != _port_info.end (); ++x) {
if (x->first.data_type != DataType::MIDI || !x->first.input) {
continue;
}
if (x->second.properties & MidiPortSelection) {
copy.push_back (x->first.port_name);
}
}
}
void
PortManager::set_port_pretty_name (string const& port, string const& pretty)
{
PortEngine::PortHandle ph = _backend->get_port_by_name (port);
if (!ph) {
return;
}
/* port-manager only handles physical I/O names */
assert (_backend->get_port_flags (ph) & IsPhysical);
_backend->set_port_property (ph, "http://jackaudio.org/metadata/pretty-name", pretty, string ());
{
/* backend IsOutput ports = capture = input ports for libardour */
PortID pid (_backend, _backend->port_data_type (ph), _backend->get_port_flags (ph) & IsOutput, port);
Glib::Threads::Mutex::Lock lm (_port_info_mutex);
fill_midi_port_info_locked ();
if (!pretty.empty ()) {
_port_info[pid].pretty_name = pretty;
} else {
/* remove empty */
PortInfo::iterator x = _port_info.find (pid);
if (x != _port_info.end () && x->second.properties == MidiPortFlags (0)) {
_port_info.erase (x);
}
}
}
save_port_info ();
MidiPortInfoChanged (); /* EMIT SIGNAL*/
PortPrettyNameChanged (port); /* EMIT SIGNAL */
}
void
PortManager::add_midi_port_flags (string const& port, MidiPortFlags flags)
{
assert (flags != MidiPortFlags (0));
PortEngine::PortHandle ph = _backend->get_port_by_name (port);
if (!ph) {
return;
}
bool emit = false;
{
PortID pid (_backend, _backend->port_data_type (ph), _backend->get_port_flags (ph) & IsOutput, port);
Glib::Threads::Mutex::Lock lm (_port_info_mutex);
fill_midi_port_info_locked ();
/* Add MIDI port if present */
if (_port_info[pid].properties != flags) {
_port_info[pid].properties = MidiPortFlags (_port_info[pid].properties | flags);
emit = true;
}
}
if (emit) {
if (flags & MidiPortSelection) {
MidiSelectionPortsChanged (); /* EMIT SIGNAL */
}
if (flags != MidiPortSelection) {
MidiPortInfoChanged (); /* EMIT SIGNAL */
}
save_port_info ();
}
}
void
PortManager::remove_midi_port_flags (string const& port, MidiPortFlags flags)
{
assert (flags != MidiPortFlags (0));
PortEngine::PortHandle ph = _backend->get_port_by_name (port);
if (!ph) {
return;
}
bool emit = false;
{
PortID pid (_backend, _backend->port_data_type (ph), _backend->get_port_flags (ph) & IsOutput, port);
Glib::Threads::Mutex::Lock lm (_port_info_mutex);
fill_midi_port_info_locked ();
PortInfo::iterator x = _port_info.find (pid);
if (x != _port_info.end ()) {
if (x->second.properties & flags) { // at least one is set
x->second.properties = MidiPortFlags (x->second.properties & ~flags);
emit = true;
}
/* remove empty */
if (x->second.properties == MidiPortFlags (0) && x->second.pretty_name.empty ()) {
_port_info.erase (x);
}
}
}
if (emit) {
if (flags & MidiPortSelection) {
MidiSelectionPortsChanged (); /* EMIT SIGNAL */
}
if (flags != MidiPortSelection) {
MidiPortInfoChanged (); /* EMIT SIGNAL */
}
save_port_info ();
}
}
string
PortManager::port_info_file ()
{
return Glib::build_filename (user_config_directory (), X_("port_metadata"));
}
#if CURRENT_SESSION_FILE_VERSION < 6999
string
PortManager::midi_port_info_file ()
{
return Glib::build_filename (user_config_directory (), X_("midi_port_info"));
}
#endif
void
PortManager::save_port_info ()
{
XMLNode* root = new XMLNode ("PortMeta");
root->set_property ("version", 1);
{
Glib::Threads::Mutex::Lock lm (_port_info_mutex);
for (PortInfo::const_iterator i = _port_info.begin (); i != _port_info.end (); ++i) {
if (port_is_virtual_piano (i->first.port_name)) {
continue;
}
XMLNode& node = i->first.state ();
node.set_property ("pretty-name", i->second.pretty_name);
node.set_property ("properties", i->second.properties);
root->add_child_nocopy (node);
}
}
XMLTree tree;
tree.set_root (root);
if (!tree.write (port_info_file ())) {
error << string_compose (_("Could not save port info to %1"), port_info_file ()) << endmsg;
}
}
void
PortManager::load_port_info ()
{
_port_info.clear ();
#if CURRENT_SESSION_FILE_VERSION < 6999
/* import old Ardour 6 MIDI meta-data */
string a6path = midi_port_info_file ();
if (Glib::file_test (a6path, Glib::FILE_TEST_EXISTS)) {
XMLTree tree;
if (!tree.read (a6path)) {
warning << string_compose (_("Cannot load/convert MIDI port info from '%1'."), a6path) << endmsg;
} else {
for (XMLNodeConstIterator i = tree.root ()->children ().begin (); i != tree.root ()->children ().end (); ++i) {
string name;
string backend;
bool input;
if (!(*i)->get_property (X_("name"), name) ||
!(*i)->get_property (X_("backend"), backend) ||
!(*i)->get_property (X_("input"), input)) {
error << string_compose (_("MIDI port info file '%1' contains invalid port description - please remove it."), a6path) << endmsg;
continue;
}
try {
PortID id (**i, true);
PortMetaData meta (**i);
_port_info[id] = meta;
} catch (...) {
error << string_compose (_("MIDI port info file '%1' contains invalid meta data - please remove it."), a6path) << endmsg;
}
}
}
}
#endif
XMLTree tree;
string path = port_info_file ();
if (!Glib::file_test (path, Glib::FILE_TEST_EXISTS)) {
return;
}
if (!tree.read (path)) {
error << string_compose (_("Cannot load port info from '%1'."), path) << endmsg;
return;
}
for (XMLNodeConstIterator i = tree.root ()->children ().begin (); i != tree.root ()->children ().end (); ++i) {
try {
PortID id (**i);
PortMetaData meta (**i);
_port_info[id] = meta;
} catch (...) {
error << string_compose (_("port info file '%1' contains invalid information - please remove it."), path) << endmsg;
}
}
}
string
PortManager::short_port_name_from_port_name (std::string const& full_name) const
{
string::size_type colon = full_name.find_first_of (':');
if (colon == string::npos || colon == full_name.length ()) {
return full_name;
}
return full_name.substr (colon + 1);
}
void
PortManager::fill_midi_port_info_locked ()
{
/* MIDI info mutex MUST be held */
if (!_midi_info_dirty || !_backend) {
return;
}
std::vector<string> ports;
AudioEngine::instance ()->get_ports (string (), DataType::MIDI, IsOutput, ports);
for (vector<string>::iterator p = ports.begin (); p != ports.end (); ++p) {
if (port_is_mine (*p) && !port_is_virtual_piano (*p)) {
continue;
}
PortID pid (_backend, DataType::MIDI, true, *p);
PortInfo::iterator x = _port_info.find (pid);
if (x != _port_info.end ()) {
continue;
}
MidiPortFlags flags (MidiPortFlags (0));
if (port_is_control_only (*p)) {
flags = MidiPortControl;
} else if (port_is_virtual_piano (*p)) {
flags = MidiPortFlags (MidiPortSelection | MidiPortMusic);
}
#ifdef HAVE_ALSA
if ((*p).find (X_("Midi Through")) != string::npos || (*p).find (X_("Midi-Through")) != string::npos) {
flags = MidiPortFlags (flags | MidiPortVirtual);
}
#endif
if (flags != MidiPortFlags (0)) {
_port_info[pid].properties = flags;
}
}
AudioEngine::instance ()->get_ports (string (), DataType::MIDI, IsInput, ports);
for (vector<string>::iterator p = ports.begin (); p != ports.end (); ++p) {
if (port_is_mine (*p)) {
continue;
}
PortID pid (_backend, DataType::MIDI, false, *p);
PortInfo::iterator x = _port_info.find (pid);
if (x != _port_info.end ()) {
continue;
}
MidiPortFlags flags (MidiPortFlags (0));
if (port_is_control_only (*p)) {
flags = MidiPortControl;
}
#ifdef HAVE_ALSA
if ((*p).find (X_("Midi Through")) != string::npos || (*p).find (X_("Midi-Through")) != string::npos) {
flags = MidiPortFlags (flags | MidiPortVirtual);
}
#endif
if (flags != MidiPortFlags (0)) {
_port_info[pid].properties = flags;
}
}
_midi_info_dirty = false;
}
void
PortManager::set_port_buffer_sizes (pframes_t n)
{
std::shared_ptr<Ports const> all = _ports.reader ();
for (auto const& p : *all) {
p.second->set_buffer_size (n);
}
_monitor_port.set_buffer_size (n);
}
bool
PortManager::check_for_ambiguous_latency (bool log) const
{
bool rv = false;
std::shared_ptr<Ports const> plist = _ports.reader ();
for (auto const& pi : *plist) {
std::shared_ptr<Port> const& p (pi.second);
/* check one to many connections */
if (!p->sends_output () || (p->flags () & IsTerminal) || !p->connected ()) {
continue;
}
if (std::dynamic_pointer_cast<AsyncMIDIPort> (p)) {
continue;
}
assert (port_is_mine (p->name ()));
LatencyRange range;
range.min = ~((pframes_t)0);
range.max = 0;
p->collect_latency_from_backend (range, true);
if (range.min != range.max) {
if (log) {
warning << string_compose (_("Ambiguous latency for port '%1' (%2, %3)"), p->name (), range.min, range.max) << endmsg;
rv = true;
} else {
return true;
}
}
}
return rv;
}
void
PortManager::reset_input_meters ()
{
_reset_meters.store (1);
}
PortManager::AudioInputPorts
PortManager::audio_input_ports () const
{
std::shared_ptr<AudioInputPorts const> p = _audio_input_ports.reader ();
return *p;
}
PortManager::MIDIInputPorts
PortManager::midi_input_ports () const
{
std::shared_ptr<MIDIInputPorts const> p = _midi_input_ports.reader ();
return *p;
}
void
PortManager::run_input_meters (pframes_t n_samples, samplecnt_t rate)
{
if (n_samples == 0) {
return;
}
int canderef (1);
const bool reset = _reset_meters.compare_exchange_strong (canderef, 0);
_monitor_port.monitor (port_engine (), n_samples);
/* calculate peak of all physical inputs (readable ports) */
std::shared_ptr<AudioInputPorts const> aip = _audio_input_ports.reader ();
for (auto const& p : *aip) {
assert (!port_is_mine (p.first));
AudioInputPort& ai = *const_cast<AudioInputPort*>(&p.second);
ai.apply_falloff (n_samples, rate, reset);
PortEngine::PortHandle ph = _backend->get_port_by_name (p.first);
if (!ph) {
continue;
}
Sample* buf = (Sample*)_backend->get_buffer (ph, n_samples);
if (!buf) {
/* can this happen? */
ai.silence (n_samples);
continue;
}
ai.process (buf, n_samples, reset);
}
/* MIDI */
std::shared_ptr<MIDIInputPorts const> mip = _midi_input_ports.reader ();
for (auto const& p : *mip) {
assert (!port_is_mine (p.first));
PortEngine::PortHandle ph = _backend->get_port_by_name (p.first);
if (!ph) {
continue;
}
MIDIInputPort& mi = *const_cast<MIDIInputPort*>(&p.second);
mi.apply_falloff (n_samples, rate, reset);
void* buffer = _backend->get_buffer (ph, n_samples);
const pframes_t event_count = _backend->get_midi_event_count (buffer);
for (pframes_t i = 0; i < event_count; ++i) {
pframes_t timestamp;
size_t size;
uint8_t const* buf;
_backend->midi_event_get (timestamp, size, &buf, buffer, i);
mi.process_event (buf, size);
}
}
}
#ifndef NDEBUG
void
PortManager::list_all_ports () const
{
std::shared_ptr<Ports const> plist = _ports.reader ();
for (auto const& p : *plist) {
std::cout << p.first << "\n";
}
}
void
PortManager::list_cycle_ports () const
{
for (auto const& p : *_cycle_ports) {
std::cout << p.first << "\n";
}
}
#endif