ardour/libs/ardour/meter.cc

491 lines
12 KiB
C++

/*
* Copyright (C) 2006-2016 David Robillard <d@drobilla.net>
* Copyright (C) 2007-2017 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2009-2011 Carl Hetherington <carl@carlh.net>
* Copyright (C) 2013-2020 Robin Gareus <robin@gareus.org>
* Copyright (C) 2015-2016 Len Ovens <len@ovenwerks.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <algorithm>
#include <cmath>
#include <limits>
#include "pbd/compose.h"
#include "ardour/audio_buffer.h"
#include "ardour/buffer_set.h"
#include "ardour/dB.h"
#include "ardour/meter.h"
#include "ardour/midi_buffer.h"
#include "ardour/rc_configuration.h"
#include "ardour/runtime_functions.h"
#include "ardour/session.h"
#include "pbd/i18n.h"
using namespace std;
using namespace ARDOUR;
PeakMeter::PeakMeter (Session& s, const std::string& name)
: Processor (s, string_compose ("meter-%1", name), Temporal::TimeDomainProvider (Temporal::AudioTime))
{
Kmeterdsp::init (s.nominal_sample_rate ());
Iec1ppmdsp::init (s.nominal_sample_rate ());
Iec2ppmdsp::init (s.nominal_sample_rate ());
Vumeterdsp::init (s.nominal_sample_rate ());
_pending_active = true;
_meter_type = MeterPeak;
_bufcnt = 0;
_reset_dpm.store (1);
_reset_max.store (1);
}
PeakMeter::~PeakMeter ()
{
while (_kmeter.size () > 0) {
delete _kmeter.back ();
delete _iec1meter.back ();
delete _iec2meter.back ();
delete _vumeter.back ();
_kmeter.pop_back ();
_iec1meter.pop_back ();
_iec2meter.pop_back ();
_vumeter.pop_back ();
}
while (_peak_power.size () > 0) {
_peak_buffer.pop_back ();
_peak_power.pop_back ();
_max_peak_signal.pop_back ();
}
}
std::string
PeakMeter::display_name () const
{
return _("Meter");
}
/** Get peaks from @a bufs
* Input acceptance is lenient - the first n buffers from @a bufs will
* be metered, where n was set by the last call to setup(), excess meters will
* be set to 0.
*
* (runs in jack realtime context)
*/
void
PeakMeter::run (BufferSet& bufs, samplepos_t /*start_sample*/, samplepos_t /*end_sample*/, double /*speed*/, pframes_t nframes, bool)
{
if (!check_active()) {
return;
}
int canderef (1);
const bool reset_max = _reset_max.compare_exchange_strong (canderef, 0);
/* max-peak is set from DPM's peak-buffer, so DPM also needs to be reset in sync */
canderef = 1;
const bool reset_dpm = _reset_dpm.compare_exchange_strong (canderef, 0) || reset_max;
const uint32_t n_audio = min (current_meters.n_audio (), bufs.count ().n_audio ());
const uint32_t n_midi = min (current_meters.n_midi (), bufs.count ().n_midi ());
uint32_t n = 0;
const uint32_t zoh = _session.nominal_sample_rate () * .021;
const float falloff_dB = Config->get_meter_falloff () * nframes / _session.nominal_sample_rate ();
_bufcnt += nframes;
/* Meter MIDI */
for (uint32_t i = 0; i < n_midi; ++i, ++n) {
float val = 0.0f;
if (reset_dpm) {
_peak_power[n] = 0;
}
const MidiBuffer& buf (bufs.get_midi (i));
for (MidiBuffer::const_iterator e = buf.begin (); e != buf.end (); ++e) {
const Evoral::Event<samplepos_t> ev (*e, false);
if (ev.is_note_on ()) {
const float this_vel = ev.buffer ()[2] / 127.0;
if (this_vel > val) {
val = this_vel;
}
} else {
val += 1.0 / bufs.get_midi (n).capacity ();
if (val > 1.0) {
val = 1.0;
}
}
}
if (_peak_power[n] < (1.0 / 512.0)) {
_peak_power[n] = 0;
} else {
/* empirical algorithm WRT to audio falloff times */
_peak_power[n] -= sqrtf (_peak_power[n]) * falloff_dB * 0.045f;
}
_peak_power[n] = max (_peak_power[n], val);
_max_peak_signal[n] = 0;
}
/* Audio Meters */
for (uint32_t i = 0; i < n_audio; ++i, ++n) {
if (bufs.get_audio (i).silent ()) {
_peak_buffer[n] = 0;
} else {
_peak_buffer[n] = compute_peak (bufs.get_audio (i).data (), nframes, _peak_buffer[n]);
_peak_buffer[n] = std::min (_peak_buffer[n], 100.f); // cut off at +40dBFS for falloff.
_max_peak_signal[n] = std::max (_peak_buffer[n], _max_peak_signal[n]);
}
if (reset_max) {
_max_peak_signal[n] = 0;
}
if (reset_dpm) {
_peak_buffer[n] = 0;
_peak_power[n] = -std::numeric_limits<float>::infinity ();
} else {
/* falloff */
if (_peak_power[n] > -318.8f) {
_peak_power[n] -= falloff_dB;
} else {
_peak_power[n] = -std::numeric_limits<float>::infinity ();
}
_peak_power[n] = max (_peak_power[n], accurate_coefficient_to_dB (_peak_buffer[n]));
/* integration buffer, retain peaks > 49Hz */
if (_bufcnt > zoh) {
_peak_buffer[n] = 0;
}
}
if (_meter_type & (MeterKrms | MeterK20 | MeterK14 | MeterK12)) {
_kmeter[i]->process (bufs.get_audio (i).data (), nframes);
}
if (_meter_type & (MeterIEC1DIN | MeterIEC1NOR)) {
_iec1meter[i]->process (bufs.get_audio (i).data (), nframes);
}
if (_meter_type & (MeterIEC2BBC | MeterIEC2EBU)) {
_iec2meter[i]->process (bufs.get_audio (i).data (), nframes);
}
if (_meter_type & MeterVU) {
_vumeter[i]->process (bufs.get_audio (i).data (), nframes);
}
}
/* Zero any excess peaks */
for (uint32_t i = n; i < _peak_power.size (); ++i) {
_peak_power[i] = -std::numeric_limits<float>::infinity ();
_max_peak_signal[n] = 0;
}
if (_bufcnt > zoh) {
_bufcnt = 0;
}
}
void
PeakMeter::reset ()
{
if (_active || _pending_active) {
_reset_dpm.store (1);
} else {
for (size_t i = 0; i < _peak_power.size (); ++i) {
_peak_power[i] = -std::numeric_limits<float>::infinity ();
_peak_buffer[i] = 0;
}
const uint32_t n_midi = min (current_meters.n_midi (), (uint32_t)_peak_power.size ());
for (size_t i = 0; i < n_midi; ++i) {
_peak_power[i] = 0;
}
}
/* these are handled async just fine. */
for (size_t n = 0; n < _kmeter.size (); ++n) {
_kmeter[n]->reset ();
_iec1meter[n]->reset ();
_iec2meter[n]->reset ();
_vumeter[n]->reset ();
}
}
void
PeakMeter::reset_max ()
{
if (_active || _pending_active) {
_reset_max.store (1);
return;
}
for (size_t i = 0; i < _max_peak_signal.size (); ++i) {
_max_peak_signal[i] = 0;
_peak_buffer[i] = 0;
}
}
bool
PeakMeter::can_support_io_configuration (const ChanCount& in, ChanCount& out)
{
out = in;
return true;
}
bool
PeakMeter::configure_io (ChanCount in, ChanCount out)
{
bool changed = false;
if (out != in) { // always 1:1
return false;
}
if (current_meters != in) {
changed = true;
}
current_meters = in;
set_max_channels (in);
if (changed) {
reset_max ();
}
return Processor::configure_io (in, out);
}
void
PeakMeter::reflect_inputs (const ChanCount& in)
{
if (!_configured || in > _max_n_meters) {
/* meter has to be configured at least once, and
* Route has to call ::set_max_channels after successful
* configure_processors.
*/
return;
}
/* In theory this cannot happen. After an initial successful
* configuration, Route::configure_processors_unlocked will revert
* to a prior config in case of an error.
*/
assert (in <= _max_n_meters);
if (in > _max_n_meters) {
return;
}
reset ();
current_meters = in;
reset_max ();
}
void
PeakMeter::emit_configuration_changed ()
{
ConfigurationChanged (current_meters, current_meters); /* EMIT SIGNAL */
}
void
PeakMeter::set_max_channels (const ChanCount& chn)
{
_max_n_meters = chn;
uint32_t const limit = chn.n_total ();
const size_t n_audio = chn.n_audio ();
while (_peak_power.size () > limit) {
_peak_buffer.pop_back ();
_peak_power.pop_back ();
_max_peak_signal.pop_back ();
}
while (_peak_power.size () < limit) {
_peak_buffer.push_back (0);
if (_peak_power.size () < current_meters.n_midi ()) {
_peak_power.push_back (0);
} else {
_peak_power.push_back (-std::numeric_limits<float>::infinity ());
}
_max_peak_signal.push_back (0);
}
assert (_peak_buffer.size () == limit);
assert (_peak_power.size () == limit);
assert (_max_peak_signal.size () == limit);
/* alloc/free other audio-only meter types. */
while (_kmeter.size () > n_audio) {
delete _kmeter.back ();
delete _iec1meter.back ();
delete _iec2meter.back ();
delete _vumeter.back ();
_kmeter.pop_back ();
_iec1meter.pop_back ();
_iec2meter.pop_back ();
_vumeter.pop_back ();
}
while (_kmeter.size () < n_audio) {
_kmeter.push_back (new Kmeterdsp ());
_iec1meter.push_back (new Iec1ppmdsp ());
_iec2meter.push_back (new Iec2ppmdsp ());
_vumeter.push_back (new Vumeterdsp ());
}
assert (_kmeter.size () == n_audio);
assert (_iec1meter.size () == n_audio);
assert (_iec2meter.size () == n_audio);
assert (_vumeter.size () == n_audio);
reset ();
reset_max ();
}
/** To be driven by the Meter signal from IO.
* Caller MUST hold its own processor_lock to prevent reconfiguration
* of meter size during this call.
*/
#define CHECKSIZE(MTR) (n < MTR.size () + n_midi && n >= n_midi)
float
PeakMeter::meter_level (uint32_t n, MeterType type)
{
if (_reset_max.load ()) {
if (n < current_meters.n_midi () && type != MeterMaxPeak) {
return 0;
} else {
return minus_infinity ();
}
}
switch (type) {
case MeterKrms:
case MeterK20:
case MeterK14:
case MeterK12:
{
const uint32_t n_midi = current_meters.n_midi ();
if (CHECKSIZE (_kmeter)) {
return accurate_coefficient_to_dB (_kmeter[n - n_midi]->read ());
}
}
break;
case MeterIEC1DIN:
case MeterIEC1NOR:
{
const uint32_t n_midi = current_meters.n_midi ();
if (CHECKSIZE (_iec1meter)) {
return accurate_coefficient_to_dB (_iec1meter[n - n_midi]->read ());
}
}
break;
case MeterIEC2BBC:
case MeterIEC2EBU:
{
const uint32_t n_midi = current_meters.n_midi ();
if (CHECKSIZE (_iec2meter)) {
return accurate_coefficient_to_dB (_iec2meter[n - n_midi]->read ());
}
}
break;
case MeterVU:
{
const uint32_t n_midi = current_meters.n_midi ();
if (CHECKSIZE (_vumeter)) {
return accurate_coefficient_to_dB (_vumeter[n - n_midi]->read ());
}
}
break;
case MeterPeak:
case MeterPeak0dB:
if (n < _peak_power.size ()) {
return _peak_power[n];
}
break;
case MeterMCP:
{
float mcptmp = -std::numeric_limits<float>::infinity ();
/* prefer to report audio only on mixed tracks */
if (current_meters.n_audio ()) {
for (uint32_t i = current_meters.n_midi (); i < _peak_power.size (); ++i) {
mcptmp = std::max (mcptmp, _peak_power[i]);
}
}
else {
for (uint32_t i = 0; i < current_meters.n_midi () && i < _peak_power.size (); ++i) {
mcptmp = std::max (mcptmp, accurate_coefficient_to_dB (_peak_power[i]));
}
}
return mcptmp;
}
case MeterMaxSignal:
assert (0);
break;
default:
case MeterMaxPeak:
if (n < _max_peak_signal.size ()) {
return accurate_coefficient_to_dB (_max_peak_signal[n]);
}
break;
}
return minus_infinity ();
}
void
PeakMeter::set_meter_type (MeterType t)
{
if (t == _meter_type) {
return;
}
_meter_type = t;
if (t & (MeterKrms | MeterK20 | MeterK14 | MeterK12)) {
const size_t n_audio = current_meters.n_audio ();
for (size_t n = 0; n < n_audio; ++n) {
_kmeter[n]->reset ();
}
}
if (t & (MeterIEC1DIN | MeterIEC1NOR)) {
const size_t n_audio = current_meters.n_audio ();
for (size_t n = 0; n < n_audio; ++n) {
_iec1meter[n]->reset ();
}
}
if (t & (MeterIEC2BBC | MeterIEC2EBU)) {
const size_t n_audio = current_meters.n_audio ();
for (size_t n = 0; n < n_audio; ++n) {
_iec2meter[n]->reset ();
}
}
if (t & MeterVU) {
const size_t n_audio = current_meters.n_audio ();
for (size_t n = 0; n < n_audio; ++n) {
_vumeter[n]->reset ();
}
}
MeterTypeChanged (t); /* EMIT SIGNAL */
}
XMLNode&
PeakMeter::state () const
{
XMLNode& node (Processor::state ());
node.set_property ("type", "meter");
return node;
}