ardour/libs/ardour/graph_edges.cc

347 lines
8.9 KiB
C++

/*
* Copyright (C) 2012-2016 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2015-2022 Robin Gareus <robin@gareus.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "ardour/graph_edges.h"
#include "ardour/route.h"
#include "ardour/track.h"
#include "pbd/i18n.h"
using namespace std;
using namespace ARDOUR;
void
GraphEdges::add (GraphVertex from, GraphVertex to, bool via_sends_only)
{
insert (_from_to, from, to);
insert (_to_from, to, from);
EdgeMapWithSends::iterator i = find_in_from_to_with_sends (from, to);
if (i != _from_to_with_sends.end ()) {
i->second.second |= via_sends_only;
} else {
_from_to_with_sends.insert (make_pair (from, make_pair (to, via_sends_only)));
}
i = find_in_to_from_with_sends (to, from);
if (i != _to_from_with_sends.end ()) {
i->second.second |= via_sends_only;
} else {
_to_from_with_sends.insert (make_pair (to, make_pair (from, via_sends_only)));
}
}
/** Find a from/to pair in the _from_to_with_sends map.
* @return iterator to the edge, or _from_to_with_sends.end().
*/
GraphEdges::EdgeMapWithSends::iterator
GraphEdges::find_in_from_to_with_sends (GraphVertex from, GraphVertex to)
{
typedef EdgeMapWithSends::iterator Iter;
pair<Iter, Iter> r = _from_to_with_sends.equal_range (from);
for (Iter i = r.first; i != r.second; ++i) {
if (i->second.first == to) {
return i;
}
}
return _from_to_with_sends.end ();
}
GraphEdges::EdgeMapWithSends::iterator
GraphEdges::find_in_to_from_with_sends (GraphVertex to, GraphVertex from)
{
typedef EdgeMapWithSends::iterator Iter;
pair<Iter, Iter> r = _to_from_with_sends.equal_range (to);
for (Iter i = r.first; i != r.second; ++i) {
if (i->second.first == from) {
return i;
}
}
return _to_from_with_sends.end ();
}
GraphEdges::EdgeMapWithSends::const_iterator
GraphEdges::find_recursively_in_from_to_with_sends (GraphVertex from, GraphVertex to) const
{
typedef EdgeMapWithSends::const_iterator Iter;
pair<Iter, Iter> r = _from_to_with_sends.equal_range (from);
for (Iter i = r.first; i != r.second; ++i) {
if (i->second.first == to) {
return i;
}
Iter t = find_recursively_in_from_to_with_sends (i->second.first, to);
if (t != _from_to_with_sends.end ()) {
return t;
}
}
return _from_to_with_sends.end ();
}
/** @param via_sends_only if non-0, filled in with true if the edge is a
* path via a send only.
* @return true if the given edge is present.
*/
bool
GraphEdges::has (GraphVertex from, GraphVertex to, bool* via_sends_only)
{
EdgeMapWithSends::iterator i = find_in_from_to_with_sends (from, to);
if (i == _from_to_with_sends.end ()) {
return false;
}
if (via_sends_only) {
*via_sends_only = i->second.second;
}
return true;
}
bool
GraphEdges::feeds (GraphVertex from, GraphVertex to) const
{
EdgeMapWithSends::const_iterator i = find_recursively_in_from_to_with_sends (from, to);
if (i == _from_to_with_sends.end ()) {
return false;
}
return true;
}
set<GraphVertex>
GraphEdges::from (GraphVertex r) const
{
EdgeMap::const_iterator i = _from_to.find (r);
if (i == _from_to.end ()) {
return set<GraphVertex> ();
}
return i->second;
}
set<GraphVertex>
GraphEdges::to (GraphVertex t, bool via_sends_only) const
{
set<GraphVertex> rv;
typedef EdgeMapWithSends::const_iterator Iter;
pair<Iter, Iter> r = _to_from_with_sends.equal_range (t);
for (Iter i = r.first; i != r.second; ++i) {
if (via_sends_only) {
if (!i->second.second) {
continue;
}
}
rv.insert (i->second.first);
for (auto const& j: GraphEdges::to (i->second.first, i->second.second ? false : via_sends_only)) {
rv.insert (j);
}
}
return rv;
}
void
GraphEdges::remove (GraphVertex from, GraphVertex to)
{
EdgeMap::iterator i = _from_to.find (from);
assert (i != _from_to.end ());
i->second.erase (to);
if (i->second.empty ()) {
_from_to.erase (i);
}
EdgeMap::iterator j = _to_from.find (to);
assert (j != _to_from.end ());
j->second.erase (from);
if (j->second.empty ()) {
_to_from.erase (j);
}
EdgeMapWithSends::iterator k = find_in_from_to_with_sends (from, to);
assert (k != _from_to_with_sends.end ());
_from_to_with_sends.erase (k);
}
/** @param to `To' route.
* @return true if there are no edges going to `to'.
*/
bool
GraphEdges::has_none_to (GraphVertex to) const
{
return _to_from.find (to) == _to_from.end ();
}
bool
GraphEdges::empty () const
{
assert (_from_to.empty () == _to_from.empty ());
return _from_to.empty ();
}
void
GraphEdges::dump () const
{
for (auto const& i : _from_to) {
cout << "FROM: " << i.first->graph_node_name () << " ";
for (auto const& j : i.second) {
cout << j->graph_node_name () << " ";
}
cout << "\n";
}
for (auto const& i : _to_from) {
cout << "TO: " << i.first->graph_node_name () << " ";
for (auto const& j : i.second) {
cout << j->graph_node_name () << " ";
}
cout << "\n";
}
}
/** Insert an edge into one of the EdgeMaps */
void
GraphEdges::insert (EdgeMap& e, GraphVertex a, GraphVertex b)
{
EdgeMap::iterator i = e.find (a);
if (i != e.end ()) {
i->second.insert (b);
} else {
set<GraphVertex> v;
v.insert (b);
e.insert (make_pair (a, v));
}
}
struct RouteRecEnabledComparator
{
bool operator () (GraphVertex n1, GraphVertex n2) const
{
std::shared_ptr<Track> t1 (std::dynamic_pointer_cast<Track>(n1));
std::shared_ptr<Track> t2 (std::dynamic_pointer_cast<Track>(n2));
std::shared_ptr<Route> r1 (std::dynamic_pointer_cast<Route>(n1));
std::shared_ptr<Route> r2 (std::dynamic_pointer_cast<Route>(n2));
PresentationInfo::order_t r1o = r1 ? r1->presentation_info().order() : 0;
PresentationInfo::order_t r2o = r2 ? r2->presentation_info().order() : 0;
if (!t1) {
if (!t2) {
/* makes no difference which is first, use presentation order */
return r1o < r2o;
} else {
/* r1 is not a track, r2 is, run it early */
return false;
}
}
if (!t2) {
/* we already tested !t1, so just use presentation order */
return r1o < r2o;
}
if (t1->rec_enable_control()->get_value()) {
if (t2->rec_enable_control()->get_value()) {
/* both rec-enabled, just use signal order */
return r1o < r2o;
} else {
/* t1 rec-enabled, t2 not rec-enabled, run t2 early */
return false;
}
} else {
if (t2->rec_enable_control()->get_value()) {
/* t2 rec-enabled, t1 not rec-enabled, run t1 early */
return true;
} else {
/* neither rec-enabled, use presentation order */
return r1o < r2o;
}
}
}
};
/** Perform a topological sort of a list of routes using a directed graph representing connections.
* @return Sorted list of routes, or 0 if the graph contains cycles (feedback loops).
*/
bool
ARDOUR::topological_sort (GraphNodeList& nodes, GraphEdges& edges)
{
/* Collect the edges of the graph. Each of these edges
* is a pair of nodes, one of which directly feeds the other
* either by a port connection or by an internal send.
*/
for (auto const& i : nodes) {
for (auto const& j : nodes) {
bool via_sends_only = false;
/* See if this *j feeds *i according to the current state of
* port connections and internal sends.
*/
if (j->direct_feeds_according_to_reality (i, &via_sends_only)) {
/* add the edge to the graph (part #1) */
edges.add (j, i, via_sends_only);
}
}
}
GraphNodeList queue;
/* initial queue has routes that are not fed by anything */
for (auto const& i : nodes) {
if (edges.has_none_to (i)) {
queue.push_back (i);
}
}
/* Sort the initial queue so that non-rec-enabled routes are run first.
* This is so that routes can record things coming from other routes
* via external connections.
*/
queue.sort (RouteRecEnabledComparator ());
/* Do the sort: algorithm is Kahn's from Wikipedia.
* `Topological sorting of large networks', Communications of the ACM 5(11):558-562.
*/
nodes.clear ();
GraphEdges remaining_edges (edges);
while (!queue.empty ()) {
GraphVertex r = queue.front ();
queue.pop_front ();
nodes.push_back (r);
set<GraphVertex> e = remaining_edges.from (r);
for (set<GraphVertex>::iterator i = e.begin(); i != e.end(); ++i) {
remaining_edges.remove (r, *i);
if (remaining_edges.has_none_to (*i)) {
queue.push_back (*i);
}
}
}
if (!remaining_edges.empty ()) {
remaining_edges.dump ();
/* There are cycles in the graph, so we can't do a topological sort */
return false;
}
return true;
}