ardour/libs/ardour/amp.cc

408 lines
11 KiB
C++

/*
* Copyright (C) 2006-2016 David Robillard <d@drobilla.net>
* Copyright (C) 2007-2017 Paul Davis <paul@linuxaudiosystems.com>
* Copyright (C) 2009-2012 Carl Hetherington <carl@carlh.net>
* Copyright (C) 2013-2018 Robin Gareus <robin@gareus.org>
* Copyright (C) 2014-2015 Ben Loftis <ben@harrisonconsoles.com>
* Copyright (C) 2016 Tim Mayberry <mojofunk@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <cstring>
#include <cmath>
#include <algorithm>
#include "evoral/Curve.h"
#include "ardour/amp.h"
#include "ardour/audio_buffer.h"
#include "ardour/buffer_set.h"
#include "ardour/gain_control.h"
#include "ardour/midi_buffer.h"
#include "ardour/rc_configuration.h"
#include "ardour/session.h"
#include "pbd/i18n.h"
using namespace ARDOUR;
using namespace PBD;
#define GAIN_COEFF_DELTA (1e-5)
Amp::Amp (Session& s, const std::string& name, std::shared_ptr<GainControl> gc, bool control_midi_also)
: Processor(s, "Amp", Temporal::TimeDomainProvider (Temporal::AudioTime))
, _apply_gain_automation(false)
, _current_gain(GAIN_COEFF_ZERO)
, _current_automation_sample (INT64_MAX)
, _gain_control (gc)
, _gain_automation_buffer(0)
, _midi_amp (control_midi_also)
{
set_display_name (name);
add_control (_gain_control);
}
bool
Amp::can_support_io_configuration (const ChanCount& in, ChanCount& out)
{
out = in;
return true;
}
bool
Amp::configure_io (ChanCount in, ChanCount out)
{
if (out != in) { // always 1:1
return false;
}
return Processor::configure_io (in, out);
}
void
Amp::run (BufferSet& bufs, samplepos_t /*start_sample*/, samplepos_t /*end_sample*/, double /*speed*/, pframes_t nframes, bool)
{
if (!check_active()) {
/* disregard potentially prepared gain-automation. */
_apply_gain_automation = false;
return;
}
if (_apply_gain_automation) {
gain_t* gab = _gain_automation_buffer;
assert (gab);
/* see note in PluginInsert::connect_and_run -- effectively emit Changed signal */
if (nframes > 0) {
_gain_control->set_value_unchecked (gab[nframes -1]);
}
if (_midi_amp) {
for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) {
MidiBuffer& mb (*i);
for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) {
Evoral::Event<MidiBuffer::TimeType> ev = *m;
if (ev.is_note_on()) {
assert(ev.time() >= 0 && ev.time() < nframes);
ev.scale_velocity (fabsf (gab[ev.time()]));
}
}
}
}
const gain_t a = 156.825f / (gain_t)_session.nominal_sample_rate(); // 25 Hz LPF; see Amp::apply_gain for details
gain_t lpf = _current_gain;
for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) {
Sample* const sp = i->data();
lpf = _current_gain;
for (pframes_t nx = 0; nx < nframes; ++nx) {
sp[nx] *= lpf;
lpf += a * (gab[nx] - lpf);
}
}
if (fabsf (lpf) < GAIN_COEFF_SMALL) {
_current_gain = GAIN_COEFF_ZERO;
} else {
_current_gain = lpf;
}
/* used it, don't do it again until setup_gain_automation() is
* called successfully.
*/
_apply_gain_automation = false;
} else { /* manual (scalar) gain */
gain_t const target_gain = _gain_control->get_value();
if (fabsf (_current_gain - target_gain) >= GAIN_COEFF_DELTA) {
_current_gain = Amp::apply_gain (bufs, _session.nominal_sample_rate(), nframes, _current_gain, target_gain, _midi_amp);
/* see note in PluginInsert::connect_and_run ()
* set_value_unchecked() won't emit a signal since the value is effectively unchanged
*/
_gain_control->Changed (false, PBD::Controllable::NoGroup);
} else if (target_gain != GAIN_COEFF_UNITY) {
_current_gain = target_gain;
apply_simple_gain (bufs, nframes, _current_gain, _midi_amp);
} else {
/* unity target gain */
_current_gain = target_gain;
}
}
}
gain_t
Amp::apply_gain (BufferSet& bufs, samplecnt_t sample_rate, samplecnt_t nframes, gain_t initial, gain_t target, bool midi_amp)
{
/** Apply a (potentially) declicked gain to the buffers of @a bufs */
gain_t rv = target;
if (nframes == 0 || bufs.count().n_total() == 0) {
return initial;
}
// if we don't need to declick, defer to apply_simple_gain
if (initial == target) {
apply_simple_gain (bufs, nframes, target);
return target;
}
/* Apply Audio Gain first, calculate target LFP'ed gain coefficient
*
* Low pass filter coefficient: 1.0 - e^(-2.0 * π * f / 48000) f in Hz.
* for f << SR, approx a ~= 6.2 * f / SR;
*/
const gain_t a = 156.825f / (gain_t)sample_rate; // 25 Hz LPF
for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) {
Sample* const buffer = i->data();
double lpf = initial;
for (pframes_t nx = 0; nx < nframes; ++nx) {
buffer[nx] *= lpf;
lpf += a * (target - lpf);
}
if (i == bufs.audio_begin()) {
rv = lpf;
}
}
if (fabsf (rv - target) < GAIN_COEFF_DELTA) {
rv = target;
}
/* MIDI Velocity scale from initial to LPF target */
if (midi_amp) {
/* don't Trim midi velocity -- only relevant for Midi on Audio tracks */
for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) {
gain_t delta;
if (rv < initial) {
/* fade out: remove more and more of delta from initial */
delta = -(initial - rv);
} else {
/* fade in: add more and more of delta from initial */
delta = rv - initial;
}
MidiBuffer& mb (*i);
for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ) {
Evoral::Event<MidiBuffer::TimeType> ev = *m;
if (ev.is_note_on() || ev.is_note_off()) {
const gain_t scale = fabsf (initial + delta * (ev.time() / (float) nframes));
if (scale < GAIN_COEFF_SMALL) {
m = mb.erase (m);
continue;
} else if (ev.is_note_on()) {
ev.scale_velocity (scale);
}
}
++m;
}
/* queue MIDI all-note-off when going silent */
if (initial > GAIN_COEFF_SMALL && rv <= GAIN_COEFF_SMALL) {
for (uint8_t channel = 0; channel <= 0xF; channel++) {
uint8_t ev[3] = { ((uint8_t) (MIDI_CMD_CONTROL | channel)), ((uint8_t) MIDI_CTL_SUSTAIN), 0 };
mb.push_back (nframes - 1, Evoral::MIDI_EVENT, 3, ev);
ev[1] = MIDI_CTL_ALL_NOTES_OFF;
mb.push_back (nframes - 1, Evoral::MIDI_EVENT, 3, ev);
}
}
}
}
return rv;
}
gain_t
Amp::apply_gain (AudioBuffer& buf, samplecnt_t sample_rate, samplecnt_t nframes, gain_t initial, gain_t target, sampleoffset_t offset)
{
/* Apply a (potentially) declicked gain to the contents of @a buf
* -- used by MonitorProcessor::run()
*/
if (nframes == 0) {
return initial;
}
// if we don't need to declick, defer to apply_simple_gain
if (initial == target) {
apply_simple_gain (buf, nframes, target, offset);
return target;
}
Sample* const buffer = buf.data (offset);
const gain_t a = 156.825f / (gain_t)sample_rate; // 25 Hz LPF, see [other] Amp::apply_gain() above for details
gain_t lpf = initial;
for (pframes_t nx = 0; nx < nframes; ++nx) {
buffer[nx] *= lpf;
lpf += a * (target - lpf);
}
if (fabsf (lpf - target) < GAIN_COEFF_DELTA) return target;
return lpf;
}
void
Amp::apply_simple_gain (BufferSet& bufs, samplecnt_t nframes, gain_t target, bool midi_amp)
{
if (fabsf (target) < GAIN_COEFF_SMALL) {
if (midi_amp) {
for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) {
MidiBuffer& mb (*i);
for (MidiBuffer::iterator m = mb.begin(); m != mb.end();) {
Evoral::Event<MidiBuffer::TimeType> ev = *m;
if (ev.is_note_on() || ev.is_note_off()) {
m = mb.erase (m);
} else {
++m;
}
}
}
}
for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) {
memset (i->data(), 0, sizeof (Sample) * nframes);
}
} else if (target != GAIN_COEFF_UNITY) {
if (midi_amp) {
for (BufferSet::midi_iterator i = bufs.midi_begin(); i != bufs.midi_end(); ++i) {
MidiBuffer& mb (*i);
for (MidiBuffer::iterator m = mb.begin(); m != mb.end(); ++m) {
Evoral::Event<MidiBuffer::TimeType> ev = *m;
if (ev.is_note_on()) {
ev.scale_velocity (fabsf (target));
}
}
}
}
for (BufferSet::audio_iterator i = bufs.audio_begin(); i != bufs.audio_end(); ++i) {
apply_gain_to_buffer (i->data(), nframes, target);
}
}
}
void
Amp::apply_simple_gain (AudioBuffer& buf, samplecnt_t nframes, gain_t target, sampleoffset_t offset)
{
if (fabsf (target) < GAIN_COEFF_SMALL) {
memset (buf.data (offset), 0, sizeof (Sample) * nframes);
} else if (target != GAIN_COEFF_UNITY) {
apply_gain_to_buffer (buf.data(offset), nframes, target);
}
}
XMLNode&
Amp::state () const
{
XMLNode& node (Processor::state ());
switch (_gain_control->parameter().type()) {
case GainAutomation:
node.set_property("type", "amp");
break;
case TrimAutomation:
node.set_property("type", "trim");
break;
case MainOutVolume:
node.set_property("type", "main-volume");
break;
default:
assert (0);
break;
}
node.add_child_nocopy (_gain_control->get_state());
return node;
}
int
Amp::set_state (const XMLNode& node, int version)
{
XMLNode* gain_node;
Processor::set_state (node, version);
if ((gain_node = node.child (Controllable::xml_node_name.c_str ())) != 0) {
_gain_control->set_state (*gain_node, version);
}
return 0;
}
/** Write gain automation for this cycle into the buffer previously passed in to
* set_gain_automation_buffer (if we are in automation playback mode and the
* transport is rolling).
*
* After calling this, the gain-automation buffer is valid for the next run.
* so make sure to call ::run() which invalidates the buffer again.
*/
void
Amp::setup_gain_automation (samplepos_t start_sample, samplepos_t end_sample, samplecnt_t nframes)
{
Glib::Threads::Mutex::Lock am (control_lock(), Glib::Threads::TRY_LOCK);
if (am.locked()
&& (_session.transport_rolling() || _session.bounce_processing())
&& _gain_control->automation_playback())
{
assert (_gain_automation_buffer);
_apply_gain_automation = _gain_control->get_masters_curve ( start_sample, end_sample, _gain_automation_buffer, nframes);
if (start_sample != _current_automation_sample && _session.bounce_processing ()) {
_current_gain = _gain_automation_buffer[0];
}
_current_automation_sample = end_sample;
} else {
_apply_gain_automation = false;
_current_automation_sample = INT64_MAX;
}
}
bool
Amp::visible() const
{
return true;
}
/** Sets up the buffer that setup_gain_automation and ::run will use for
* gain automationc curves. Must be called before setup_gain_automation,
* and must be called with process lock held.
*/
void
Amp::set_gain_automation_buffer (gain_t* g)
{
_gain_automation_buffer = g;
}