ardour/tools/signal-test/signal-test.cc
Paul Davis 5d023b4c60 libpbd: fix an important thinko for cross-thread signal architecture
The old code assumed that the thread that created a request buffer for a given
signal-emitting thread would be the latter thread, and thus a thread-local
pointer to the request buffer could be used. This turns out not to be true: the
GUI thread tends to be responsible for constructing the request buffers for
pre-registered threads.

That mechanism has been replaced by using a RWLock protected map using
pthread_t as the key and the request buffer as the value. This allows any
thread to create and register the request buffers used between any other pair
of threads (because the lookup always uses a pthread_t).

The symptoms of this problem were a signal emitted in an audioengine thread
that was propagated to the target thread, but when the target thread scans its
request buffers for requests, it finds nothing (because it didn't know about
the request buffer). In a sense, the signal was successfully delivered to the
target thread, but no meaningful work (i.e the signal handler) is performed.
2023-04-21 12:16:37 -06:00

232 lines
4.3 KiB
C++

#include <cassert>
#include <cstdio>
#include <cstdlib>
#include <getopt.h>
#include <pthread.h>
#include "pbd/event_loop.h"
#include "pbd/pbd.h"
#include "pbd/pcg_rand.h"
#include "pbd/signals.h"
class Tx
{
public:
PBD::Signal1<void, int> sig1;
};
/* ****************************************************************************/
class Rx1
{
public:
Rx1 (Tx& sender)
{
sender.sig1.connect_same_thread (_connection, boost::bind (&Rx1::cb, this, _1));
}
private:
void cb (int i)
{
printf ("Rx1(%d) ", i);
}
PBD::ScopedConnection _connection;
};
/* ****************************************************************************/
class MyEventLoop : public sigc::trackable, public PBD::EventLoop
{
public:
MyEventLoop (std::string const& name)
: EventLoop (name)
{
run_loop_thread = Glib::Threads::Thread::self ();
}
void call_slot (InvalidationRecord* ir, const boost::function<void ()>& f)
{
if (Glib::Threads::Thread::self () == run_loop_thread) {
f ();
} else {
assert (!ir);
assert (0);
f (); // XXX really queue and process during run ()
}
}
void run ()
{
; // process Events, if any
}
Glib::Threads::RWlock& slot_invalidation_rwlock ()
{
return request_buffer_map_lock;
}
private:
Glib::Threads::Thread* run_loop_thread;
Glib::Threads::RWLock request_buffer_map_lock;
};
struct MyInvalidationRecord : public PBD::EventLoop::InvalidationRecord {
~MyInvalidationRecord ()
{
assert (use_count () == 0);
}
};
static MyEventLoop event_loop ("foo");
static MyInvalidationRecord _ir;
class Rx2 : public PBD::ScopedConnectionList
{
public:
Rx2 (Tx& sender)
{
sender.sig1.connect (*this, &_ir, boost::bind (&Rx2::cb, this, _1), &event_loop);
}
private:
void cb (int i)
{
printf ("Rx2(%d) ", i);
}
};
/* ****************************************************************************/
pthread_barrier_t barrier;
static void*
delete_tx (void* arg)
{
Tx* tx = static_cast<Tx*> (arg);
pthread_barrier_wait (&barrier);
delete tx;
return 0;
}
static void*
delete_rx1 (void* arg)
{
Rx1* rx1 = static_cast<Rx1*> (arg);
pthread_barrier_wait (&barrier);
delete rx1;
return 0;
}
static void*
delete_rx2 (void* arg)
{
Rx2* rx2 = static_cast<Rx2*> (arg);
pthread_barrier_wait (&barrier);
delete rx2;
return 0;
}
/* ****************************************************************************/
static PBD::PCGRand pcg;
static bool emit_signal = false;
static void
run_test ()
{
Tx* tx = new Tx ();
Rx1* rx1 = new Rx1 (*tx);
Rx2* rx2 = new Rx2 (*tx);
/* randomize thread start, not that it matters much since
* pthread_barrier_wait() leaves it undefined which thread
* continues with PTHREAD_BARRIER_SERIAL_THREAD, but some
* implementations may special-case the last */
static int rnd[3] = { 0, 1, 2 };
for (int i = 2; i > 0; --i) {
int j = pcg.rand (i + 1);
int tmp = rnd[i];
rnd[i] = rnd[j];
rnd[j] = tmp;
}
if (emit_signal) {
tx->sig1 (rnd[0]); /* EMIT SIGNAL */
}
pthread_t t[3];
for (int i = 0; i < 3; ++i) {
switch (rnd[i]) {
case 0:
pthread_create (&t[0], NULL, delete_tx, (void*)tx);
break;
case 1:
pthread_create (&t[1], NULL, delete_rx1, (void*)rx1);
break;
case 2:
pthread_create (&t[2], NULL, delete_rx2, (void*)rx2);
break;
}
}
for (int i = 0; i < 3; ++i) {
pthread_join (t[i], NULL);
}
if (emit_signal) {
printf ("\n");
}
}
int
main (int argc, char** argv)
{
int n_iter = 0;
const char* optstring = "ei:";
/* clang-format off */
const struct option longopts[] = {
{ "emit", no_argument, 0, 'e' },
{ "iterations", required_argument, 0, 'i' },
};
/* clang-format on */
int c = 0;
while (EOF != (c = getopt_long (argc, argv, optstring, longopts, (int*)0))) {
switch (c) {
case 'e':
emit_signal = true;
break;
case 'i':
n_iter = atoi (optarg);
break;
default:
fprintf (stderr, "Error: unrecognized option.\n");
::exit (EXIT_FAILURE);
break;
}
}
if (optind != argc) {
fprintf (stderr, "Error: unrecognized option.\n");
::exit (EXIT_FAILURE);
}
if (n_iter <= 0 || n_iter > 1000000) {
n_iter = 1000;
}
PBD::init ();
pthread_barrier_init (&barrier, NULL, 3);
for (int i = 0; i < n_iter; ++i) {
run_test ();
}
pthread_barrier_destroy (&barrier);
PBD::cleanup ();
return 0;
}