
1 A natural definition for tempo ramping
1.1 Some definitions
The time, often denoted 𝑡, is the duration in some multiple unit of seconds (samples, super-
clock, etc).

We define 𝑏 to be the beats function: 𝑏 is the number of beats that occurred since 𝑡 = 0
until the current time. It is assumed to be continuous and even derivable rather than being
a staircase function: 𝑏 will thus value 4.5 when exactly in the middle of beat 4, halfway1

between pulsations 4 and 5.
The tempo function, or simply tempo, is the number 𝑇 of pulsations per unit of time.

Thus 𝑇 = d𝑏
d𝑡

.
A tempo ramp is a definition of 𝑇 for 0 ≤ 𝑡 ≤ 𝛥𝑡 such that 𝑇𝑡=0 = 𝑇0 and 𝑇𝑡=𝛥𝑡 =

𝑇end = 𝑇0 + 𝛥𝑇 where 𝛥𝑡, 𝑇0 and 𝑇end or 𝛥𝑇 are given. Most of the times they are set
by the user, but 𝛥𝑡 can be sometimes defined in beats, that is be the unique 𝛥𝑡 such that
𝑏|𝑡=𝛥𝑡 = 𝛥𝑏.

1.2 Linear tempo ramping
The simplest definition that comes to mind is a tempo ramp where the tempo increases from
𝑇0 to 𝑇0 + 𝛥𝑇 linearly with time.

Here 𝑇 = 𝑇0 + 𝛥𝑇
𝛥𝑡

× 𝑡, and thus 𝑏 = 𝛥𝑇
2𝛥𝑡

× 𝑡2 + 𝑇0 × 𝑡, assuming 𝑏|𝑡=0 = 0.
If 𝛥𝑡 is defined implicitly from a duration 𝛥𝑏 in beats, then

𝛥𝑏 = 𝛥𝑇
2𝛥𝑡

× 𝛥𝑡2 + 𝑇0𝛥𝑡 = (1
2

𝛥𝑇 + 𝑇0) × 𝛥𝑡

thus
𝛥𝑡 = 2𝛥𝑏

𝛥𝑇 + 2𝑇0

1.3 Exponential tempo ramping
Humans are not very good at keeping track precisely of absolute time for long durations,
and are better at comparing short durations, that is maintain a reasonably stable time span
between successive pulsations, and have a precise sense of elapsed time in terms of these
pulsations.

In particular, when changing the tempo, it is less far-fetched to imagine a human feeling
the tempo increase as a function of elapsed beats rather than absolute time in seconds which
is a pulsation that is very hard to maintain constant and even sense when competing with
the (increasing) musical pulsation.

In other words, a definition more suitable than that of linear ramping would be that the
tempo increases linearly with the value of 𝑏. We thus want

𝑇 = 𝑇0 + 𝛥𝑇
𝛥𝑏

× 𝑏, that is d𝑏
d𝑡

− 𝛥𝑇
𝛥𝑏

× 𝑏 = 𝑇0

The solutions of this order 1 linear differential equation are2 𝑏 = 𝐴e 𝛥𝑇
𝛥𝑏 𝑡 − 𝛥𝑏𝑇0

𝛥𝑇
, and

since we want 𝑏|𝑡=0 = 0, we get 𝐴 = 𝛥𝑏𝑇0
𝛥𝑇

that is

𝑏 = 𝛥𝑏𝑇0
𝛥𝑇

(e 𝛥𝑇
𝛥𝑏 𝑡 − 1)

1Not necessarily halfway in time units, though.
2The exponential is the solution of the associated homogeneous equation and the second term is the

constant solution of the equation.

1

Denoting 𝜔 = 𝛥𝑇
𝛥𝑏

we find 𝑏 = 𝑇0
𝜔 (e𝜔𝑡 − 1). (Note: 𝜔 is called 𝑐 in Nick’s text, but I like

𝜔 better since it is a frequency).

The tempo is 𝑇 = d𝑏
d𝑡

= 𝑇0e 𝛥𝑇
𝛥𝑏 𝑡 = 𝑇0e𝜔𝑡, and this is where the name exponential tempo

ramp comes from.
Recall that 𝛥𝑏, 𝛥𝑇 and 𝑇0 are parameters of the ramp, while 𝑡 is the arbitrary time

within the ramp at which we want to know 𝑏 and 𝑇.
Let us compute the reciprocal of 𝑏:

𝑏 = 𝛥𝑏𝑇0
𝛥𝑇

(e 𝛥𝑇
𝛥𝑏 𝑡 − 1) ⟺ 𝛥𝑇

𝛥𝑏𝑇0
𝑏 = e 𝛥𝑇

𝛥𝑏 𝑡 − 1 ⟺ 1 + 𝛥𝑇
𝛥𝑏𝑇0

𝑏 = e 𝛥𝑇
𝛥𝑏 𝑡

⟺ log (1 + 𝛥𝑇
𝛥𝑏𝑇0

𝑏) = 𝛥𝑇
𝛥𝑏

𝑡 ⟺ 𝑡 = 𝛥𝑏
𝛥𝑇

log (1 + 𝛥𝑇
𝛥𝑏𝑇0

𝑏)

If 𝛥𝑡 is defined directly instead of implicitly from a duration 𝛥𝑏 in beats, then we have
to find out the value of 𝛥𝑏. At 𝑡 = 𝛥𝑡, we have 𝑏 = 𝛥𝑏 thus

𝛥𝑡 = 𝛥𝑏
𝛥𝑇

log (1 + 𝛥𝑇
𝛥𝑏𝑇0

𝛥𝑏) ⟺ 𝛥𝑡 = 𝛥𝑏
𝛥𝑇

log (1 + 𝛥𝑇
𝑇0

) ⟺ 𝛥𝑏 = 𝛥𝑇 𝛥𝑡

log (1 + 𝛥𝑇
𝑇0

)

A more useful expression is

𝜔 = 𝛥𝑇
𝛥𝑏

= 1
𝛥𝑡

log (1 + 𝛥𝑇
𝑇0

)

which gives

𝑏 = 𝛥𝑡𝑇0

log (1 + 𝛥𝑇
𝑇0

)
e

𝑡
𝛥𝑡 log(1+ 𝛥𝑇

𝑇0
) = 𝛥𝑡𝑇0

log (1 + 𝛥𝑇
𝑇0

)
(1 + 𝛥𝑇

𝑇0
)

𝑡
𝛥𝑡

and

𝑇 = 𝑇0e
𝑡

𝛥𝑡 log(1+ 𝛥𝑇
𝑇0

) = 𝑇0 (1 + 𝛥𝑇
𝑇0

)
𝑡

𝛥𝑡

We at last compute the reciprocals:

𝑏 = 𝛥𝑡𝑇0

log (1 + 𝛥𝑇
𝑇0

)
e

𝑡
𝛥𝑡 log(1+ 𝛥𝑇

𝑇0
) ⟺

log (1 + 𝛥𝑇
𝑇0

)
𝛥𝑡𝑇0

𝑏 = e
𝑡

𝛥𝑡 log(1+ 𝛥𝑇
𝑇0

)

⟺ log (
log (1 + 𝛥𝑇

𝑇0
)

𝛥𝑡𝑇0
𝑏) = 𝑡

𝛥𝑡
log (1 + 𝛥𝑇

𝑇0
) ⟺ 𝑡 =

𝛥𝑡 log (
log(1+ 𝛥𝑇

𝑇0
)

𝛥𝑡𝑇0
𝑏)

log (1 + 𝛥𝑇
𝑇0

)

1.4 Summary with 𝑇 as main tempo representation
The following table gathers all results. For code factorization we might want to only consider
the red formulas, that is compute (and maybe cache) 𝜔 beforehand. Note that in the formulas,
𝜔 is always the inverse of a time, never in per-beats.

2

When you know 𝛥𝑡 𝛥𝑏 𝜔

Compute 𝜔 1
𝛥𝑡

log (1 + 𝛥𝑇
𝑇0

) 𝛥𝑇
𝛥𝑏

Compute 𝑏 from 𝑡 𝛥𝑡𝑇0

log (1 + 𝛥𝑇
𝑇0

)
(1 + 𝛥𝑇

𝑇0
)

𝑡
𝛥𝑡 𝛥𝑏𝑇0

𝛥𝑇
(e 𝛥𝑇

𝛥𝑏 𝑡 − 1) 𝑇0
𝜔

(e𝜔𝑡 − 1)

Compute 𝑇 from 𝑡 𝑇0 (1 + 𝛥𝑇
𝑇0

)
𝑡

𝛥𝑡

𝑇0e 𝛥𝑇
𝛥𝑏 𝑡 𝑇0e𝜔𝑡

Compute 𝑡 from 𝑏
𝛥𝑡 log (

log(1+ 𝛥𝑇
𝑇0

)
𝛥𝑡𝑇0

𝑏)

log (1 + 𝛥𝑇
𝑇0

)
𝛥𝑏
𝛥𝑇

log (1 + 𝛥𝑇
𝛥𝑏𝑇0

𝑏) 1
𝜔

log (1 + 𝜔𝑏
𝑇0

)

Compute 𝑇 from 𝑏 𝑇0 + 1
𝛥𝑡

log (1 + 𝛥𝑇
𝑇0

) × 𝑏 𝑇0 + 𝛥𝑇
𝛥𝑏

× 𝑏 𝑇0 + 𝜔𝑏

Note that there are often library functions to compute log(1 + 𝑥) directly from 𝑥 more
precise than computing 1 + 𝑥 then its logarithm. The main reason is that when adding 1to
some very small number you loose a lot of precision because the exponent is now tailored to
the representation of 1, and that the Taylor-McLaurin series for log(1 + 𝑥) is a very efficient
mean to compute an approximate value for it.

1.5 Using 𝑆 = 1
𝑇 to represent tempo

Since the base time unit in ardour is not seconds but far smaller than that3, any value of
𝑇 or 𝛥𝑇 will be very small. A better value to store, that can easily be rounded to integer
without a huge loss of precision, is 𝑆 = 1/𝑇.

Instead of having 𝑇0 and 𝑇1 = 𝑇0+𝛥𝑇, we thus assume that when computing the formulas
we have access to 𝑆0 and 𝑆1.

Then from 𝛥𝑡, 𝜔 = 1
𝛥𝑡

log (1 + 𝛥𝑇
𝑇0

) = 1
𝛥𝑡

log (𝑇1
𝑇0

) = 1
𝛥𝑡

log (𝑆0
𝑆1

).

From beats, 𝜔 = 𝛥𝑇
𝛥𝑏

= 𝑆0 − 𝑆1
𝑆0𝑆1𝛥𝑏

(or just use 𝜔 = (1
𝑆1

− 1
𝑆0

) /𝛥𝑏).

To compute 𝑏 from 𝑡 we can use 𝑏 = e𝜔𝑡 − 1
𝑆0𝜔

.

And for 𝑆 from 𝑡 we have 𝑆 = 𝑆0
e𝜔𝑡 = 𝑆0e−𝜔𝑡.

As for 𝑡 from 𝑏 the formula becomes 𝑡 = 1
𝜔

log (1 + 𝑆0𝜔𝑏).
Lastly, for 𝑆 from 𝑏 we can see:

𝑆 = 1/𝑇 = 1
1/𝑆0 + 𝜔𝑏

= 𝑆0
1 + 𝑆0𝜔𝑏

Maybe we can also to compute and cache 𝜔′ = 𝑆0𝜔 = 𝑆0
𝛥𝑡

log (𝑆0
𝑆1

) = 𝑆0 − 𝑆1
𝑆1𝛥𝑏

Which is

in « per-beats » and occurs often in the formulas (but not exclusively). Note that the fact
that 𝜔 or 𝜔′ is relevant is not depending on whether we compute from time or from beats,
or even if the ramp length is defined in time or in beats.

3It was samples in previous versions of Ardour, and is even more precise in later versions.

3

