EBU/VAMP: clang-format and reduce scope

This commit is contained in:
Robin Gareus 2021-04-03 23:42:09 +02:00
parent 1890cc234f
commit e3a6fab05e
Signed by: rgareus
GPG Key ID: A090BCE02CF57F04
4 changed files with 525 additions and 508 deletions

View File

@ -1,5 +1,3 @@
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Vamp
@ -31,170 +29,170 @@
#include "EBUr128.h"
using std::string;
using std::vector;
using std::cerr;
using std::endl;
using std::string;
using std::vector;
VampEBUr128::VampEBUr128(float inputSampleRate)
: Plugin(inputSampleRate)
, m_stepSize(0)
VampEBUr128::VampEBUr128 (float inputSampleRate)
: Plugin (inputSampleRate)
, m_stepSize (0)
{
}
VampEBUr128::~VampEBUr128()
VampEBUr128::~VampEBUr128 ()
{
}
string
VampEBUr128::getIdentifier() const
VampEBUr128::getIdentifier () const
{
return "ebur128";
return "ebur128";
}
string
VampEBUr128::getName() const
VampEBUr128::getName () const
{
return "EBU R128 Loudness";
return "EBU R128 Loudness";
}
string
VampEBUr128::getDescription() const
VampEBUr128::getDescription () const
{
return "Loudness measurements according to the EBU Recommendation 128";
return "Loudness measurements according to the EBU Recommendation 128";
}
string
VampEBUr128::getMaker() const
VampEBUr128::getMaker () const
{
return "Harrison Consoles";
return "Harrison Consoles";
}
int
VampEBUr128::getPluginVersion() const
VampEBUr128::getPluginVersion () const
{
return 2;
return 2;
}
string
VampEBUr128::getCopyright() const
VampEBUr128::getCopyright () const
{
return "GPL version 2 or later";
return "GPL version 2 or later";
}
bool
VampEBUr128::initialise(size_t channels, size_t stepSize, size_t blockSize)
VampEBUr128::initialise (size_t channels, size_t stepSize, size_t blockSize)
{
if (channels < getMinChannelCount() ||
channels > getMaxChannelCount()) return false;
if (channels < getMinChannelCount () || channels > getMaxChannelCount ()) {
return false;
}
m_stepSize = std::min(stepSize, blockSize);
m_channels = channels;
m_stepSize = std::min (stepSize, blockSize);
m_channels = channels;
ebu.init (m_channels, m_inputSampleRate);
ebu.init (m_channels, m_inputSampleRate);
return true;
return true;
}
void
VampEBUr128::reset()
VampEBUr128::reset ()
{
ebu.reset ();
ebu.reset ();
}
VampEBUr128::OutputList
VampEBUr128::getOutputDescriptors() const
VampEBUr128::getOutputDescriptors () const
{
OutputList list;
OutputList list;
OutputDescriptor zc;
zc.identifier = "loundless";
zc.name = "Integrated loudness";
zc.description = "Loudness (integrated, short, momentary)";
zc.unit = "LUFS";
zc.hasFixedBinCount = true;
zc.binCount = 0;
zc.hasKnownExtents = false;
zc.isQuantized = false;
zc.sampleType = OutputDescriptor::OneSamplePerStep;
list.push_back(zc);
OutputDescriptor zc;
zc.identifier = "loundless";
zc.name = "Integrated loudness";
zc.description = "Loudness (integrated, short, momentary)";
zc.unit = "LUFS";
zc.hasFixedBinCount = true;
zc.binCount = 0;
zc.hasKnownExtents = false;
zc.isQuantized = false;
zc.sampleType = OutputDescriptor::OneSamplePerStep;
list.push_back (zc);
zc.identifier = "range";
zc.name = "Integrated Loudness Range";
zc.description = "Dynamic Range of the Audio";
zc.unit = "LU";
zc.hasFixedBinCount = true;
zc.binCount = 0;
zc.hasKnownExtents = false;
zc.isQuantized = false;
zc.sampleType = OutputDescriptor::OneSamplePerStep;
list.push_back(zc);
zc.identifier = "range";
zc.name = "Integrated Loudness Range";
zc.description = "Dynamic Range of the Audio";
zc.unit = "LU";
zc.hasFixedBinCount = true;
zc.binCount = 0;
zc.hasKnownExtents = false;
zc.isQuantized = false;
zc.sampleType = OutputDescriptor::OneSamplePerStep;
list.push_back (zc);
zc.identifier = "histogram";
zc.name = "Loudness Histogram";
zc.description = "Dynamic Range of the audio";
zc.unit = "";
zc.hasFixedBinCount = false;
zc.binCount = 0;
zc.hasKnownExtents = false;
zc.isQuantized = false;
zc.sampleType = OutputDescriptor::OneSamplePerStep;
list.push_back(zc);
zc.identifier = "histogram";
zc.name = "Loudness Histogram";
zc.description = "Dynamic Range of the audio";
zc.unit = "";
zc.hasFixedBinCount = false;
zc.binCount = 0;
zc.hasKnownExtents = false;
zc.isQuantized = false;
zc.sampleType = OutputDescriptor::OneSamplePerStep;
list.push_back (zc);
return list;
return list;
}
VampEBUr128::FeatureSet
VampEBUr128::process(const float *const *inputBuffers,
Vamp::RealTime timestamp)
VampEBUr128::process (const float* const* inputBuffers,
Vamp::RealTime timestamp)
{
if (m_stepSize == 0) {
cerr << "ERROR: VampEBUr128::process: "
<< "VampEBUr128 has not been initialised"
<< endl;
return FeatureSet();
}
if (m_stepSize == 0) {
cerr << "ERROR: VampEBUr128::process: "
<< "VampEBUr128 has not been initialised"
<< endl;
return FeatureSet ();
}
ebu.integr_start (); // noop if already started
ebu.process (m_stepSize, inputBuffers);
ebu.integr_start (); // noop if already started
ebu.process (m_stepSize, inputBuffers);
return FeatureSet();
return FeatureSet ();
}
VampEBUr128::FeatureSet
VampEBUr128::getRemainingFeatures()
VampEBUr128::getRemainingFeatures ()
{
FeatureSet returnFeatures;
FeatureSet returnFeatures;
Feature loudness_integrated;
loudness_integrated.hasTimestamp = false;
loudness_integrated.values.push_back(ebu.integrated());
Feature loudness_integrated;
loudness_integrated.hasTimestamp = false;
loudness_integrated.values.push_back (ebu.integrated ());
Feature loudness_short;
loudness_short.hasTimestamp = false;
loudness_short.values.push_back(ebu.maxloudn_S());
Feature loudness_short;
loudness_short.hasTimestamp = false;
loudness_short.values.push_back (ebu.maxloudn_S ());
Feature loudness_momentary;
loudness_momentary.hasTimestamp = false;
loudness_momentary.values.push_back(ebu.maxloudn_M());
Feature loudness_momentary;
loudness_momentary.hasTimestamp = false;
loudness_momentary.values.push_back (ebu.maxloudn_M ());
returnFeatures[0].push_back(loudness_integrated);
returnFeatures[0].push_back(loudness_short);
returnFeatures[0].push_back(loudness_momentary);
returnFeatures[0].push_back (loudness_integrated);
returnFeatures[0].push_back (loudness_short);
returnFeatures[0].push_back (loudness_momentary);
Feature range;
range.hasTimestamp = false;
range.values.push_back(ebu.range_max () - ebu.range_min ());
returnFeatures[1].push_back(range);
Feature range;
range.hasTimestamp = false;
range.values.push_back (ebu.range_max () - ebu.range_min ());
returnFeatures[1].push_back (range);
Feature hist;
hist.hasTimestamp = false;
const int * hist_S = ebu.histogram_S();
for (int i = 110; i < 650; ++i) {
hist.values.push_back(hist_S[i]);
}
returnFeatures[2].push_back(hist);
Feature hist;
hist.hasTimestamp = false;
const int* hist_S = ebu.histogram_S ();
for (int i = 110; i < 650; ++i) {
hist.values.push_back (hist_S[i]);
}
returnFeatures[2].push_back (hist);
return returnFeatures;
return returnFeatures;
}

View File

@ -1,5 +1,3 @@
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
/*
Vamp
@ -32,42 +30,50 @@
#define _EBUR128_PLUGIN_H_
#include <vamp-sdk/Plugin.h>
#include "ebu_r128_proc.h"
class VampEBUr128 : public Vamp::Plugin
{
public:
VampEBUr128(float inputSampleRate);
virtual ~VampEBUr128();
VampEBUr128 (float inputSampleRate);
virtual ~VampEBUr128 ();
size_t getMinChannelCount() const { return 1; }
size_t getMaxChannelCount() const { return 2; }
bool initialise(size_t channels, size_t stepSize, size_t blockSize);
void reset();
size_t getMinChannelCount () const
{
return 1;
}
size_t getMaxChannelCount () const
{
return 2;
}
bool initialise (size_t channels, size_t stepSize, size_t blockSize);
void reset ();
InputDomain getInputDomain() const { return TimeDomain; }
InputDomain getInputDomain () const
{
return TimeDomain;
}
std::string getIdentifier() const;
std::string getName() const;
std::string getDescription() const;
std::string getMaker() const;
int getPluginVersion() const;
std::string getCopyright() const;
std::string getIdentifier () const;
std::string getName () const;
std::string getDescription () const;
std::string getMaker () const;
int getPluginVersion () const;
std::string getCopyright () const;
OutputList getOutputDescriptors() const;
OutputList getOutputDescriptors () const;
FeatureSet process(const float *const *inputBuffers,
Vamp::RealTime timestamp);
FeatureSet process (const float* const* inputBuffers, Vamp::RealTime timestamp);
FeatureSet getRemainingFeatures();
FeatureSet getRemainingFeatures ();
protected:
size_t m_stepSize;
size_t m_channels;
size_t m_stepSize;
size_t m_channels;
private:
Fons::Ebu_r128_proc ebu;
FonsEBU::Ebu_r128_proc ebu;
};
#endif

View File

@ -2,7 +2,7 @@
//
// Copyright (C) 2010-2011 Fons Adriaensen <fons@linuxaudio.org>
// Copyright (C) 2015 Robin Gareus <robin@gareus.org>
//
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
@ -19,10 +19,9 @@
//
// ------------------------------------------------------------------------
#include <string.h>
#include <math.h>
#include "ebu_r128_proc.h"
#include <math.h>
#include <string.h>
#ifdef COMPILER_MSVC
#include <float.h>
@ -32,317 +31,333 @@
#define isfinite_local isfinite
#endif
namespace Fons {
using namespace FonsEBU;
float Ebu_r128_hist::_bin_power [100] = { 0.0f };
float Ebu_r128_proc::_chan_gain [5] = { 1.0f, 1.0f, 1.0f, 1.41f, 1.41f };
float Ebu_r128_proc::Ebu_r128_hist::_bin_power[100] = { 0.0f };
float Ebu_r128_proc::_chan_gain[5] = { 1.0f, 1.0f, 1.0f, 1.41f, 1.41f };
Ebu_r128_hist::Ebu_r128_hist (void)
Ebu_r128_proc::Ebu_r128_hist::Ebu_r128_hist ()
{
_histc = new int [751];
initstat ();
reset ();
_histc = new int[751];
initstat ();
reset ();
}
Ebu_r128_hist::~Ebu_r128_hist (void)
Ebu_r128_proc::Ebu_r128_hist::~Ebu_r128_hist ()
{
delete[] _histc;
delete[] _histc;
}
void Ebu_r128_hist::reset (void)
void
Ebu_r128_proc::Ebu_r128_hist::reset ()
{
memset (_histc, 0, 751 * sizeof (float));
_count = 0;
_error = 0;
memset (_histc, 0, 751 * sizeof (float));
_count = 0;
_error = 0;
}
void Ebu_r128_hist::initstat (void)
void
Ebu_r128_proc::Ebu_r128_hist::initstat ()
{
int i;
if (_bin_power [0]) return;
for (i = 0; i < 100; i++)
{
_bin_power [i] = powf (10.0f, i / 100.0f);
}
}
void Ebu_r128_hist::addpoint (float v)
{
int k;
k = (int) floorf (10 * v + 700.5f);
if (k < 0) return;
if (k > 750)
{
k = 750;
_error++;
}
_histc [k]++;
_count++;
}
float Ebu_r128_hist::integrate (int i)
{
int j, k, n;
float s;
j = i % 100;
n = 0;
s = 0;
while (i <= 750)
{
k = _histc [i++];
n += k;
s += k * _bin_power [j++];
if (j == 100)
{
j = 0;
s /= 10.0f;
if (_bin_power[0])
return;
for (int i = 0; i < 100; i++) {
_bin_power[i] = powf (10.0f, i / 100.0f);
}
}
return s / n;
}
void Ebu_r128_hist::calc_integ (float *vi, float *th)
void
Ebu_r128_proc::Ebu_r128_hist::addpoint (float v)
{
int k;
float s;
if (_count < 50)
{
*vi = -200.0f;
return;
}
s = integrate (0);
// Original threshold was -8 dB below result of first integration
// if (th) *th = 10 * log10f (s) - 8.0f;
// k = (int)(floorf (100 * log10f (s) + 0.5f)) + 620;
// Threshold redefined to -10 dB below result of first integration
if (th) *th = 10 * log10f (s) - 10.0f;
k = (int)(floorf (100 * log10f (s) + 0.5f)) + 600;
if (k < 0) k = 0;
s = integrate (k);
*vi = 10 * log10f (s);
int k = (int)floorf (10 * v + 700.5f);
if (k < 0)
return;
if (k > 750) {
k = 750;
_error++;
}
_histc[k]++;
_count++;
}
void Ebu_r128_hist::calc_range (float *v0, float *v1, float *th)
float
Ebu_r128_proc::Ebu_r128_hist::integrate (int i)
{
int i, j, k, n;
float a, b, s;
int j, k, n;
float s;
if (_count < 20)
{
*v0 = -200.0f;
*v1 = -200.0f;
return;
}
s = integrate (0);
if (th) *th = 10 * log10f (s) - 20.0f;
k = (int)(floorf (100 * log10f (s) + 0.5)) + 500;
if (k < 0) k = 0;
for (i = k, n = 0; i <= 750; i++) n += _histc [i];
a = 0.10f * n;
b = 0.95f * n;
for (i = k, s = 0; s < a; i++) s += _histc [i];
for (j = 750, s = n; s > b; j--) s -= _histc [j];
*v0 = (i - 701) / 10.0f;
*v1 = (j - 699) / 10.0f;
}
Ebu_r128_proc::Ebu_r128_proc (void)
{
reset ();
}
Ebu_r128_proc::~Ebu_r128_proc (void)
{
}
void Ebu_r128_proc::init (int nchan, float fsamp)
{
_nchan = nchan;
_fsamp = fsamp;
_fragm = (int) fsamp / 20;
detect_init (_fsamp);
reset ();
}
void Ebu_r128_proc::reset (void)
{
_integr = false;
_frcnt = _fragm;
_frpwr = 1e-30f;
_wrind = 0;
_div1 = 0;
_div2 = 0;
_loudness_M = -200.0f;
_loudness_S = -200.0f;
memset (_power, 0, 64 * sizeof (float));
integr_reset ();
detect_reset ();
}
void Ebu_r128_proc::integr_reset (void)
{
_hist_M.reset ();
_hist_S.reset ();
_maxloudn_M = -200.0f;
_maxloudn_S = -200.0f;
_integrated = -200.0f;
_integ_thr = -200.0f;
_range_min = -200.0f;
_range_max = -200.0f;
_range_thr = -200.0f;
_div1 = _div2 = 0;
}
void Ebu_r128_proc::process (int nfram, const float *const *input)
{
int i, k;
for (i = 0; i < _nchan; i++) _ipp [i] = input [i];
while (nfram)
{
k = (_frcnt < nfram) ? _frcnt : nfram;
_frpwr += detect_process (k);
_frcnt -= k;
if (_frcnt == 0)
{
_power [_wrind++] = _frpwr / _fragm;
_frcnt = _fragm;
_frpwr = 1e-30f;
_wrind &= 63;
_loudness_M = addfrags (8);
_loudness_S = addfrags (60);
if (!isfinite_local(_loudness_M) || _loudness_M < -200.f) _loudness_M = -200.0f;
if (!isfinite_local(_loudness_S) || _loudness_S < -200.f) _loudness_S = -200.0f;
if (_loudness_M > _maxloudn_M) _maxloudn_M = _loudness_M;
if (_loudness_S > _maxloudn_S) _maxloudn_S = _loudness_S;
if (_integr)
{
if (++_div1 == 2)
{
_hist_M.addpoint (_loudness_M);
_div1 = 0;
}
if (++_div2 == 10)
{
_hist_S.addpoint (_loudness_S);
_div2 = 0;
_hist_M.calc_integ (&_integrated, &_integ_thr);
_hist_S.calc_range (&_range_min, &_range_max, &_range_thr);
j = i % 100;
n = 0;
s = 0;
while (i <= 750) {
k = _histc[i++];
n += k;
s += k * _bin_power[j++];
if (j == 100) {
j = 0;
s /= 10.0f;
}
}
}
for (i = 0; i < _nchan; i++) _ipp [i] += k;
nfram -= k;
}
return s / n;
}
float Ebu_r128_proc::addfrags (int nfrag)
void
Ebu_r128_proc::Ebu_r128_hist::calc_integ (float* vi, float* th)
{
int i, k;
float s;
int k;
float s;
s = 0;
k = (_wrind - nfrag) & 63;
for (i = 0; i < nfrag; i++) s += _power [(i + k) & 63];
return -0.6976f + 10 * log10f (s / nfrag);
}
void Ebu_r128_proc::detect_init (float fsamp)
{
float a, b, c, d, r, u1, u2, w1, w2;
r = 1 / tan (4712.3890f / fsamp);
w1 = r / 1.12201f;
w2 = r * 1.12201f;
u1 = u2 = 1.4085f + 210.0f / fsamp;
a = u1 * w1;
b = w1 * w1;
c = u2 * w2;
d = w2 * w2;
r = 1 + a + b;
_a0 = (1 + c + d) / r;
_a1 = (2 - 2 * d) / r;
_a2 = (1 - c + d) / r;
_b1 = (2 - 2 * b) / r;
_b2 = (1 - a + b) / r;
r = 48.0f / fsamp;
a = 4.9886075f * r;
b = 6.2298014f * r * r;
r = 1 + a + b;
a *= 2 / r;
b *= 4 / r;
_c3 = a + b;
_c4 = b;
r = 1.004995f / r;
_a0 *= r;
_a1 *= r;
_a2 *= r;
}
void Ebu_r128_proc::detect_reset (void)
{
for (int i = 0; i < MAXCH; i++) _fst [i].reset ();
}
float Ebu_r128_proc::detect_process (int nfram)
{
int i, j;
float si, sj;
float x, y, z1, z2, z3, z4;
float const *p;
Ebu_r128_fst *S;
si = 0;
for (i = 0, S = _fst; i < _nchan; i++, S++)
{
z1 = S->_z1;
z2 = S->_z2;
z3 = S->_z3;
z4 = S->_z4;
p = _ipp [i];
sj = 0;
for (j = 0; j < nfram; j++)
{
x = p [j] - _b1 * z1 - _b2 * z2 + 1e-15f;
y = _a0 * x + _a1 * z1 + _a2 * z2 - _c3 * z3 - _c4 * z4;
z2 = z1;
z1 = x;
z4 += z3;
z3 += y;
sj += y * y;
if (_count < 50) {
*vi = -200.0f;
return;
}
if (_nchan == 1) si = 2 * sj;
else si += _chan_gain [i] * sj;
S->_z1 = !isfinite_local(z1) ? 0 : z1;
S->_z2 = !isfinite_local(z2) ? 0 : z2;
S->_z3 = !isfinite_local(z3) ? 0 : z3;
S->_z4 = !isfinite_local(z4) ? 0 : z4;
}
return si;
s = integrate (0);
// Original threshold was -8 dB below result of first integration
// if (th) *th = 10 * log10f (s) - 8.0f;
// k = (int)(floorf (100 * log10f (s) + 0.5f)) + 620;
// Threshold redefined to -10 dB below result of first integration
if (th) {
*th = 10 * log10f (s) - 10.0f;
}
k = (int)(floorf (100 * log10f (s) + 0.5f)) + 600;
if (k < 0) {
k = 0;
}
s = integrate (k);
*vi = 10 * log10f (s);
}
};
void
Ebu_r128_proc::Ebu_r128_hist::calc_range (float* v0, float* v1, float* th)
{
int i, j, k, n;
float a, b, s;
if (_count < 20) {
*v0 = -200.0f;
*v1 = -200.0f;
return;
}
s = integrate (0);
if (th) {
*th = 10 * log10f (s) - 20.0f;
}
k = (int)(floorf (100 * log10f (s) + 0.5)) + 500;
if (k < 0) {
k = 0;
}
for (i = k, n = 0; i <= 750; i++) {
n += _histc[i];
}
a = 0.10f * n;
b = 0.95f * n;
for (i = k, s = 0; s < a; i++) {
s += _histc[i];
}
for (j = 750, s = n; s > b; j--) {
s -= _histc[j];
}
*v0 = (i - 701) / 10.0f;
*v1 = (j - 699) / 10.0f;
}
Ebu_r128_proc::Ebu_r128_proc ()
{
reset ();
}
Ebu_r128_proc::~Ebu_r128_proc ()
{
}
void
Ebu_r128_proc::init (int nchan, float fsamp)
{
_nchan = nchan;
_fsamp = fsamp;
_fragm = (int)fsamp / 20;
detect_init (_fsamp);
reset ();
}
void
Ebu_r128_proc::reset ()
{
_integr = false;
_frcnt = _fragm;
_frpwr = 1e-30f;
_wrind = 0;
_div1 = 0;
_div2 = 0;
_loudness_M = -200.0f;
_loudness_S = -200.0f;
memset (_power, 0, 64 * sizeof (float));
integr_reset ();
detect_reset ();
}
void
Ebu_r128_proc::integr_reset ()
{
_hist_M.reset ();
_hist_S.reset ();
_maxloudn_M = -200.0f;
_maxloudn_S = -200.0f;
_integrated = -200.0f;
_integ_thr = -200.0f;
_range_min = -200.0f;
_range_max = -200.0f;
_range_thr = -200.0f;
_div1 = _div2 = 0;
}
void
Ebu_r128_proc::process (int nfram, const float* const* input)
{
int i, k;
for (i = 0; i < _nchan; i++) {
_ipp[i] = input[i];
}
while (nfram) {
k = (_frcnt < nfram) ? _frcnt : nfram;
_frpwr += detect_process (k);
_frcnt -= k;
if (_frcnt == 0) {
_power[_wrind++] = _frpwr / _fragm;
_frcnt = _fragm;
_frpwr = 1e-30f;
_wrind &= 63;
_loudness_M = addfrags (8);
_loudness_S = addfrags (60);
if (!isfinite_local (_loudness_M) || _loudness_M < -200.f) {
_loudness_M = -200.0f;
}
if (!isfinite_local (_loudness_S) || _loudness_S < -200.f) {
_loudness_S = -200.0f;
}
if (_loudness_M > _maxloudn_M) {
_maxloudn_M = _loudness_M;
}
if (_loudness_S > _maxloudn_S) {
_maxloudn_S = _loudness_S;
}
if (_integr) {
if (++_div1 == 2) {
_hist_M.addpoint (_loudness_M);
_div1 = 0;
}
if (++_div2 == 10) {
_hist_S.addpoint (_loudness_S);
_div2 = 0;
_hist_M.calc_integ (&_integrated, &_integ_thr);
_hist_S.calc_range (&_range_min, &_range_max, &_range_thr);
}
}
}
for (i = 0; i < _nchan; i++) {
_ipp[i] += k;
}
nfram -= k;
}
}
float
Ebu_r128_proc::addfrags (int nfrag)
{
int i, k;
float s;
s = 0;
k = (_wrind - nfrag) & 63;
for (i = 0; i < nfrag; i++) {
s += _power[(i + k) & 63];
}
return -0.6976f + 10 * log10f (s / nfrag);
}
void
Ebu_r128_proc::detect_init (float fsamp)
{
float a, b, c, d, r, u1, u2, w1, w2;
r = 1 / tan (4712.3890f / fsamp);
w1 = r / 1.12201f;
w2 = r * 1.12201f;
u1 = u2 = 1.4085f + 210.0f / fsamp;
a = u1 * w1;
b = w1 * w1;
c = u2 * w2;
d = w2 * w2;
r = 1 + a + b;
_a0 = (1 + c + d) / r;
_a1 = (2 - 2 * d) / r;
_a2 = (1 - c + d) / r;
_b1 = (2 - 2 * b) / r;
_b2 = (1 - a + b) / r;
r = 48.0f / fsamp;
a = 4.9886075f * r;
b = 6.2298014f * r * r;
r = 1 + a + b;
a *= 2 / r;
b *= 4 / r;
_c3 = a + b;
_c4 = b;
r = 1.004995f / r;
_a0 *= r;
_a1 *= r;
_a2 *= r;
}
void
Ebu_r128_proc::detect_reset ()
{
for (int i = 0; i < MAXCH; i++)
_fst[i].reset ();
}
float
Ebu_r128_proc::detect_process (int nfram)
{
int i, j;
float si, sj;
float x, y, z1, z2, z3, z4;
float const* p;
Ebu_r128_fst* S;
si = 0;
for (i = 0, S = _fst; i < _nchan; i++, S++) {
z1 = S->_z1;
z2 = S->_z2;
z3 = S->_z3;
z4 = S->_z4;
p = _ipp[i];
sj = 0;
for (j = 0; j < nfram; j++) {
x = p[j] - _b1 * z1 - _b2 * z2 + 1e-15f;
y = _a0 * x + _a1 * z1 + _a2 * z2 - _c3 * z3 - _c4 * z4;
z2 = z1;
z1 = x;
z4 += z3;
z3 += y;
sj += y * y;
}
if (_nchan == 1) {
si = 2 * sj;
} else {
si += _chan_gain[i] * sj;
}
S->_z1 = !isfinite_local (z1) ? 0 : z1;
S->_z2 = !isfinite_local (z2) ? 0 : z2;
S->_z3 = !isfinite_local (z3) ? 0 : z3;
S->_z4 = !isfinite_local (z4) ? 0 : z4;
}
return si;
}

View File

@ -1,7 +1,7 @@
// ------------------------------------------------------------------------
//
// Copyright (C) 2010-2011 Fons Adriaensen <fons@linuxaudio.org>
//
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
@ -18,118 +18,116 @@
//
// ------------------------------------------------------------------------
#ifndef _EBU_R128_PROC_H
#define _EBU_R128_PROC_H
#define MAXCH 5
namespace Fons {
class Ebu_r128_fst
{
private:
friend class Ebu_r128_proc;
void reset (void) { _z1 = _z2 = _z3 = _z4 = 0; }
float _z1, _z2, _z3, _z4;
};
class Ebu_r128_hist
{
private:
Ebu_r128_hist (void);
~Ebu_r128_hist (void);
friend class Ebu_r128_proc;
void reset (void);
void initstat (void);
void addpoint (float v);
float integrate (int ind);
void calc_integ (float *vi, float *th);
void calc_range (float *v0, float *v1, float *th);
int *_histc;
int _count;
int _error;
static float _bin_power [100];
};
namespace FonsEBU {
class Ebu_r128_proc
{
public:
Ebu_r128_proc ();
~Ebu_r128_proc ();
Ebu_r128_proc (void);
~Ebu_r128_proc (void);
void init (int nchan, float fsamp);
void reset ();
void process (int nfram, const float* const* input);
void init (int nchan, float fsamp);
void reset (void);
void process (int nfram, const float *const *input);
void integr_reset (void);
void integr_pause (void) { _integr = false; }
void integr_start (void) { _integr = true; }
void integr_reset ();
void integr_pause () { _integr = false; }
void integr_start () { _integr = true; }
float loudness_M (void) const { return _loudness_M; }
float maxloudn_M (void) const { return _maxloudn_M; }
float loudness_S (void) const { return _loudness_S; }
float maxloudn_S (void) const { return _maxloudn_S; }
float integrated (void) const { return _integrated; }
float integ_thr (void) const { return _integ_thr; }
float range_min (void) const { return _range_min; }
float range_max (void) const { return _range_max; }
float range_thr (void) const { return _range_thr; }
float loudness_M () const { return _loudness_M; }
float maxloudn_M () const { return _maxloudn_M; }
float loudness_S () const { return _loudness_S; }
float maxloudn_S () const { return _maxloudn_S; }
float integrated () const { return _integrated; }
const int *histogram_M (void) const { return _hist_M._histc; }
const int *histogram_S (void) const { return _hist_S._histc; }
int hist_M_count (void) const { return _hist_M._count; }
int hist_S_count (void) const { return _hist_S._count; }
float integ_thr () const { return _integ_thr; }
float range_min () const { return _range_min; }
float range_max () const { return _range_max; }
float range_thr () const { return _range_thr; }
const int* histogram_M () const { return _hist_M._histc; }
const int* histogram_S () const { return _hist_S._histc; }
int hist_M_count () const { return _hist_M._count; }
int hist_S_count () const { return _hist_S._count; }
private:
class Ebu_r128_fst
{
private:
friend class Ebu_r128_proc;
float addfrags (int nfrag);
void detect_init (float fsamp);
void detect_reset (void);
float detect_process (int nfram);
void reset ()
{
_z1 = _z2 = _z3 = _z4 = 0;
}
bool _integr; // Integration on/off.
int _nchan; // Number of channels, 2 or 5.
float _fsamp; // Sample rate.
int _fragm; // Fragmenst size, 1/20 second.
int _frcnt; // Number of samples remaining in current fragment.
float _frpwr; // Power accumulated for current fragment.
float _power [64]; // Array of fragment powers.
int _wrind; // Write index into _frpwr
int _div1; // M period counter, 200 ms;
int _div2; // S period counter, 1s;
float _loudness_M;
float _maxloudn_M;
float _loudness_S;
float _maxloudn_S;
float _integrated;
float _integ_thr;
float _range_min;
float _range_max;
float _range_thr;
// Filter coefficients and states.
float _a0, _a1, _a2;
float _b1, _b2;
float _c3, _c4;
float const *_ipp [MAXCH];
Ebu_r128_fst _fst [MAXCH];
Ebu_r128_hist _hist_M;
Ebu_r128_hist _hist_S;
float _z1, _z2, _z3, _z4;
};
// Default channel gains.
static float _chan_gain [5];
class Ebu_r128_hist
{
private:
Ebu_r128_hist ();
~Ebu_r128_hist ();
friend class Ebu_r128_proc;
void reset ();
void initstat ();
void addpoint (float v);
float integrate (int ind);
void calc_integ (float* vi, float* th);
void calc_range (float* v0, float* v1, float* th);
int* _histc;
int _count;
int _error;
static float _bin_power[100];
};
float addfrags (int nfrag);
void detect_init (float fsamp);
void detect_reset ();
float detect_process (int nfram);
bool _integr; // Integration on/off.
int _nchan; // Number of channels, 2 or 5.
float _fsamp; // Sample rate.
int _fragm; // Fragmenst size, 1/20 second.
int _frcnt; // Number of samples remaining in current fragment.
float _frpwr; // Power accumulated for current fragment.
float _power[64]; // Array of fragment powers.
int _wrind; // Write index into _frpwr
int _div1; // M period counter, 200 ms;
int _div2; // S period counter, 1s;
float _loudness_M;
float _maxloudn_M;
float _loudness_S;
float _maxloudn_S;
float _integrated;
float _integ_thr;
float _range_min;
float _range_max;
float _range_thr;
// Filter coefficients and states.
float _a0, _a1, _a2;
float _b1, _b2;
float _c3, _c4;
float const* _ipp[MAXCH];
Ebu_r128_fst _fst[MAXCH];
Ebu_r128_hist _hist_M;
Ebu_r128_hist _hist_S;
// Default channel gains.
static float _chan_gain[5];
};
};