Added facilities into PluginInsert for the GUI to gather parts of the real signal passed through the insert. Also added rudimentary plugin input/output difference analysis in the plugin eq gui for the collected signal.

git-svn-id: svn://localhost/ardour2/branches/3.0@3987 d708f5d6-7413-0410-9779-e7cbd77b26cf
This commit is contained in:
Sampo Savolainen 2008-10-20 18:57:34 +00:00
parent 820acf2300
commit a75868c767
6 changed files with 314 additions and 30 deletions

View File

@ -26,7 +26,8 @@
FFT::FFT(uint32_t windowSize)
: _window_size(windowSize),
_data_size(_window_size/2),
_iterations(0)
_iterations(0),
_hann_window(0)
{
_fftInput = (float *) fftwf_malloc(sizeof(float) * _window_size);
@ -50,12 +51,19 @@ FFT::reset()
}
void
FFT::analyze(ARDOUR::Sample *input)
FFT::analyze(ARDOUR::Sample *input, WindowingType windowing_type)
{
_iterations++;
memcpy(_fftInput, input, sizeof(float) * _window_size);
if (windowing_type == HANN) {
float *window = get_hann_window();
for (uint32_t i = 0; i < _window_size; i++) {
_fftInput[i] *= window[i];
}
}
fftwf_execute(_plan);
_power_at_bin[0] += _fftOutput[0] * _fftOutput[0];
@ -96,9 +104,37 @@ FFT::calculate()
}
}
float *
FFT::get_hann_window()
{
if (_hann_window)
return _hann_window;
_hann_window = (float *) malloc(sizeof(float) * _window_size);
double sum = 0.0;
for (uint32_t i=0; i < _window_size; i++) {
_hann_window[i]=0.81f * ( 0.5f - (0.5f * (float) cos(2.0f * M_PI * (float)i / (float)(_window_size))));
sum += _hann_window[i];
}
double isum = 1.0 / sum;
for (uint32_t i=0; i < _window_size; i++) {
_hann_window[i] *= isum;
}
return _hann_window;
}
FFT::~FFT()
{
if (_hann_window) {
free(_hann_window);
}
fftwf_destroy_plan(_plan);
free(_power_at_bin);
free(_phase_at_bin);

View File

@ -38,8 +38,13 @@ class FFT
FFT(uint32_t);
~FFT();
enum WindowingType {
NONE,
HANN
};
void reset();
void analyze(ARDOUR::Sample *);
void analyze(ARDOUR::Sample *, WindowingType w = NONE);
void calculate();
uint32_t bins() const { return _data_size; }
@ -47,12 +52,17 @@ class FFT
float power_at_bin(uint32_t i) const { return _power_at_bin[i]; }
float phase_at_bin(uint32_t i) const { return _phase_at_bin[i]; }
private:
float *get_hann_window();
uint32_t const _window_size;
uint32_t const _data_size;
uint32_t _iterations;
float *_hann_window;
float *_fftInput;
float *_fftOutput;

View File

@ -22,6 +22,7 @@
#include "fft.h"
#include "ardour_ui.h"
#include "gui_thread.h"
#include <ardour/audio_buffer.h>
#include <ardour/data_type.h>
@ -36,14 +37,19 @@ PluginEqGui::PluginEqGui(boost::shared_ptr<ARDOUR::PluginInsert> pluginInsert)
: _min_dB(-12.0),
_max_dB(+12.0),
_step_dB(3.0),
_impulse_fft(0)
_impulse_fft(0),
_signal_input_fft(0),
_signal_output_fft(0),
_plugin_insert(pluginInsert)
{
_signal_analysis_running = false;
_samplerate = ARDOUR_UI::instance()->the_session()->frame_rate();
_plugin = pluginInsert->get_impulse_analysis_plugin();
_plugin = _plugin_insert->get_impulse_analysis_plugin();
_plugin->activate();
set_buffer_size(4096);
set_buffer_size(4096, 16384);
//set_buffer_size(4096, 4096);
_log_coeff = (1.0 - 2.0 * (1000.0/(_samplerate/2.0))) / powf(1000.0/(_samplerate/2.0), 2.0);
_log_max = log10f(1 + _log_coeff);
@ -80,6 +86,7 @@ PluginEqGui::PluginEqGui(boost::shared_ptr<ARDOUR::PluginInsert> pluginInsert)
ADD_DB_ROW(-12, +12, 3, "-12dB .. +12dB");
ADD_DB_ROW(-24, +24, 5, "-24dB .. +24dB");
ADD_DB_ROW(-36, +36, 6, "-36dB .. +36dB");
ADD_DB_ROW(-64, +64,12, "-64dB .. +64dB");
#undef ADD_DB_ROW
@ -103,6 +110,10 @@ PluginEqGui::PluginEqGui(boost::shared_ptr<ARDOUR::PluginInsert> pluginInsert)
attach( *manage(_analysis_area), 1, 3, 1, 2);
attach( *manage(dBSelectBin), 1, 2, 2, 3, Gtk::SHRINK, Gtk::SHRINK);
attach( *manage(_phase_button), 2, 3, 2, 3, Gtk::SHRINK, Gtk::SHRINK);
// Connect the realtime signal collection callback
_plugin_insert->AnalysisDataGathered.connect( sigc::mem_fun(*this, &PluginEqGui::signal_collect_callback ));
}
PluginEqGui::~PluginEqGui()
@ -112,6 +123,9 @@ PluginEqGui::~PluginEqGui()
}
delete _impulse_fft;
delete _signal_input_fft;
delete _signal_output_fft;
_plugin->deactivate();
// all gui objects are *manage'd by the inherited Table object
@ -190,26 +204,46 @@ PluginEqGui::redraw_scales()
}
_analysis_area->queue_draw();
// TODO: Add graph legend!
}
void
PluginEqGui::set_buffer_size(uint32_t size)
PluginEqGui::set_buffer_size(uint32_t size, uint32_t signal_size)
{
if (_buffer_size == size)
if (_buffer_size == size && _signal_buffer_size == signal_size)
return;
_buffer_size = size;
if (_impulse_fft) {
delete _impulse_fft;
_impulse_fft = 0;
FFT *tmp1 = _impulse_fft;
FFT *tmp2 = _signal_input_fft;
FFT *tmp3 = _signal_output_fft;
try {
_impulse_fft = new FFT(size);
_signal_input_fft = new FFT(signal_size);
_signal_output_fft = new FFT(signal_size);
} catch( ... ) {
// Don't care about lost memory, we're screwed anyhow
_impulse_fft = tmp1;
_signal_input_fft = tmp2;
_signal_output_fft = tmp3;
throw;
}
_impulse_fft = new FFT(_buffer_size);
if (tmp1) delete tmp1;
if (tmp2) delete tmp1;
if (tmp3) delete tmp1;
_buffer_size = size;
_signal_buffer_size = signal_size;
// These are for impulse analysis only, the signal analysis uses the actual
// number of I/O's for the plugininsert
uint32_t inputs = _plugin->get_info()->n_inputs.n_audio();
uint32_t outputs = _plugin->get_info()->n_outputs.n_audio();
// buffers for the signal analysis are ensured inside PluginInsert
uint32_t n_chans = std::max(inputs, outputs);
_bufferset.ensure_buffers(ARDOUR::DataType::AUDIO, n_chans, _buffer_size);
@ -232,13 +266,42 @@ PluginEqGui::resize_analysis_area(Gtk::Allocation& size)
bool
PluginEqGui::timeout_callback()
{
run_analysis();
if (!_signal_analysis_running) {
_signal_analysis_running = true;
_plugin_insert -> collect_signal_for_analysis(_signal_buffer_size);
}
run_impulse_analysis();
return true;
}
void
PluginEqGui::run_analysis()
PluginEqGui::signal_collect_callback(ARDOUR::BufferSet *in, ARDOUR::BufferSet *out)
{
ENSURE_GUI_THREAD(bind (mem_fun (*this, &PluginEqGui::signal_collect_callback), in, out));
_signal_input_fft ->reset();
_signal_output_fft->reset();
for (uint32_t i = 0; i < _plugin_insert->input_streams().n_audio(); ++i) {
_signal_input_fft ->analyze(in ->get_audio(i).data(_signal_buffer_size, 0), FFT::HANN);
}
for (uint32_t i = 0; i < _plugin_insert->output_streams().n_audio(); ++i) {
_signal_output_fft->analyze(out->get_audio(i).data(_signal_buffer_size, 0), FFT::HANN);
}
_signal_input_fft ->calculate();
_signal_output_fft->calculate();
_signal_analysis_running = false;
// This signals calls expose_analysis_area()
_analysis_area->queue_draw();
}
void
PluginEqGui::run_impulse_analysis()
{
uint32_t inputs = _plugin->get_info()->n_inputs.n_audio();
uint32_t outputs = _plugin->get_info()->n_outputs.n_audio();
@ -320,17 +383,19 @@ PluginEqGui::redraw_analysis_area()
cairo_paint(cr);
if (_phase_button->get_active()) {
plot_phase(_analysis_area, cr);
plot_impulse_phase(_analysis_area, cr);
}
plot_amplitude(_analysis_area, cr);
plot_impulse_amplitude(_analysis_area, cr);
// TODO: make this optional
plot_signal_amplitude_difference(_analysis_area, cr);
cairo_destroy(cr);
}
#define PHASE_PROPORTION 0.6
#define PHASE_PROPORTION 0.5
void
PluginEqGui::draw_scales_phase(Gtk::Widget *w, cairo_t *cr)
@ -385,7 +450,7 @@ PluginEqGui::draw_scales_phase(Gtk::Widget *w, cairo_t *cr)
}
void
PluginEqGui::plot_phase(Gtk::Widget *w, cairo_t *cr)
PluginEqGui::plot_impulse_phase(Gtk::Widget *w, cairo_t *cr)
{
float x,y;
@ -393,6 +458,9 @@ PluginEqGui::plot_phase(Gtk::Widget *w, cairo_t *cr)
float avgY = 0.0;
int avgNum = 0;
float width = w->get_width();
float height = w->get_height();
cairo_set_source_rgba(cr, 0.95, 0.3, 0.2, 1.0);
for (uint32_t i = 0; i < _impulse_fft->bins()-1; i++) {
// x coordinate of bin i
@ -407,7 +475,11 @@ PluginEqGui::plot_phase(Gtk::Widget *w, cairo_t *cr)
avgY = 0;
avgNum = 0;
} else if (rint(x) > prevX || i == _impulse_fft->bins()-1 ) {
cairo_line_to(cr, prevX, avgY/(float)avgNum);
avgY = avgY/(float)avgNum;
if (avgY > (height * 10.0) ) avgY = height * 10.0;
if (avgY < (-height * 10.0) ) avgY = -height * 10.0;
cairo_line_to(cr, prevX, avgY);
//cairo_line_to(cr, prevX, avgY/(float)avgNum);
avgY = 0;
avgNum = 0;
@ -454,7 +526,8 @@ PluginEqGui::draw_scales_power(Gtk::Widget *w, cairo_t *cr)
cairo_set_source_rgb(cr, 0.4, 0.4, 0.4);
cairo_move_to(cr, x + fontXOffset, 3.0);
//cairo_move_to(cr, x + fontXOffset, 3.0);
cairo_move_to(cr, x - extents.height, 3.0);
cairo_rotate(cr, M_PI / 2.0);
cairo_show_text(cr, buf);
@ -526,7 +599,7 @@ power_to_dB(float a)
}
void
PluginEqGui::plot_amplitude(Gtk::Widget *w, cairo_t *cr)
PluginEqGui::plot_impulse_amplitude(Gtk::Widget *w, cairo_t *cr)
{
float x,y;
@ -534,6 +607,9 @@ PluginEqGui::plot_amplitude(Gtk::Widget *w, cairo_t *cr)
float avgY = 0.0;
int avgNum = 0;
float width = w->get_width();
float height = w->get_height();
cairo_set_source_rgb(cr, 1.0, 1.0, 1.0);
cairo_set_line_width (cr, 2.5);
@ -552,7 +628,11 @@ PluginEqGui::plot_amplitude(Gtk::Widget *w, cairo_t *cr)
avgY = 0;
avgNum = 0;
} else if (rint(x) > prevX || i == _impulse_fft->bins()-1 ) {
cairo_line_to(cr, prevX, avgY/(float)avgNum);
avgY = avgY/(float)avgNum;
if (avgY > (height * 10.0) ) avgY = height * 10.0;
if (avgY < (-height * 10.0) ) avgY = -height * 10.0;
cairo_line_to(cr, prevX, avgY);
//cairo_line_to(cr, prevX, avgY/(float)avgNum);
avgY = 0;
avgNum = 0;
@ -567,3 +647,78 @@ PluginEqGui::plot_amplitude(Gtk::Widget *w, cairo_t *cr)
cairo_stroke(cr);
}
void
PluginEqGui::plot_signal_amplitude_difference(Gtk::Widget *w, cairo_t *cr)
{
float x,y;
int prevX = 0;
float avgY = 0.0;
int avgNum = 0;
float width = w->get_width();
float height = w->get_height();
cairo_set_source_rgb(cr, 0.0, 1.0, 0.0);
cairo_set_line_width (cr, 2.5);
for (uint32_t i = 0; i < _signal_input_fft->bins()-1; i++) {
// x coordinate of bin i
x = log10f(1.0 + (float)i / (float)_signal_input_fft->bins() * _log_coeff) / _log_max;
x *= _analysis_width;
float power_out = power_to_dB(_signal_output_fft->power_at_bin(i));
float power_in = power_to_dB(_signal_input_fft ->power_at_bin(i));
float power = power_out - power_in;
// for SaBer
/*
double p = 10.0 * log10( 1.0 + (double)_signal_output_fft->power_at_bin(i) - (double)
- _signal_input_fft ->power_at_bin(i));
//p *= 1000000.0;
float power = (float)p;
if ( (i % 1000) == 0) {
std::cerr << i << ": " << power << std::endl;
}
*/
if (isinf(power)) {
if (power < 0) {
power = _min_dB - 1.0;
} else {
power = _max_dB - 1.0;
}
} else if (isnan(power)) {
power = _min_dB - 1.0;
}
float yCoeff = ( power - _min_dB) / (_max_dB - _min_dB);
y = _analysis_height - _analysis_height*yCoeff;
if ( i == 0 ) {
cairo_move_to(cr, x, y);
avgY = 0;
avgNum = 0;
} else if (rint(x) > prevX || i == _impulse_fft->bins()-1 ) {
avgY = avgY/(float)avgNum;
if (avgY > (height * 10.0) ) avgY = height * 10.0;
if (avgY < (-height * 10.0) ) avgY = -height * 10.0;
cairo_line_to(cr, prevX, avgY);
avgY = 0;
avgNum = 0;
}
prevX = rint(x);
avgY += y;
avgNum++;
}
cairo_stroke(cr);
}

View File

@ -42,11 +42,13 @@ class PluginEqGui : public Gtk::Table
private:
// Setup
void set_buffer_size(uint32_t);
void set_buffer_size(uint32_t, uint32_t);
void change_dB_scale();
// Analysis
void run_analysis();
void run_impulse_analysis();
void signal_collect_callback(ARDOUR::BufferSet *, ARDOUR::BufferSet *);
float _signal_analysis_running;
// Drawing
virtual void on_hide();
@ -62,10 +64,12 @@ class PluginEqGui : public Gtk::Table
bool expose_analysis_area(GdkEventExpose *);
void draw_scales_power(Gtk::Widget *, cairo_t *);
void plot_amplitude(Gtk::Widget *,cairo_t *);
void plot_impulse_amplitude(Gtk::Widget *,cairo_t *);
void draw_scales_phase(Gtk::Widget *,cairo_t *);
void plot_phase(Gtk::Widget *,cairo_t *);
void plot_impulse_phase(Gtk::Widget *,cairo_t *);
void plot_signal_amplitude_difference(Gtk::Widget *,cairo_t *);
// Helpers
bool timeout_callback();
@ -86,6 +90,7 @@ class PluginEqGui : public Gtk::Table
float _log_max;
nframes_t _buffer_size;
nframes_t _signal_buffer_size;
// buffers
ARDOUR::BufferSet _bufferset;
@ -97,7 +102,10 @@ class PluginEqGui : public Gtk::Table
// My objects
FFT *_impulse_fft;
FFT *_signal_input_fft;
FFT *_signal_output_fft;
boost::shared_ptr<ARDOUR::Plugin> _plugin;
boost::shared_ptr<ARDOUR::PluginInsert> _plugin_insert;
// gui objects
Gtk::DrawingArea *_analysis_area;

View File

@ -106,6 +106,16 @@ class PluginInsert : public Processor
boost::shared_ptr<Plugin> get_impulse_analysis_plugin();
sigc::signal<void, BufferSet*, BufferSet*> AnalysisDataGathered;
void collect_signal_for_analysis(nframes_t nframes) {
// called from outside the audio thread, so this should be safe
_signal_analysis_input_bufferset.ensure_buffers(input_streams(), nframes);
_signal_analysis_output_bufferset.ensure_buffers(output_streams(), nframes);
_signal_analysis_collect_nframes_max = nframes;
_signal_analysis_collected_nframes = 0;
}
private:
void parameter_changed (Evoral::Parameter, float);
@ -118,6 +128,12 @@ class PluginInsert : public Processor
std::vector<boost::shared_ptr<Plugin> > _plugins;
boost::weak_ptr<Plugin> _impulseAnalysisPlugin;
nframes_t _signal_analysis_collected_nframes;
nframes_t _signal_analysis_collect_nframes_max;
BufferSet _signal_analysis_input_bufferset;
BufferSet _signal_analysis_output_bufferset;
void automation_run (BufferSet& bufs, nframes_t nframes, nframes_t offset);
void connect_and_run (BufferSet& bufs, nframes_t nframes, nframes_t offset, bool with_auto, nframes_t now = 0);

View File

@ -57,7 +57,9 @@ using namespace PBD;
const string PluginInsert::port_automation_node_name = "PortAutomation";
PluginInsert::PluginInsert (Session& s, boost::shared_ptr<Plugin> plug, Placement placement)
: Processor (s, plug->name(), placement)
: Processor (s, plug->name(), placement),
_signal_analysis_collected_nframes(0),
_signal_analysis_collect_nframes_max(0)
{
/* the first is the master */
@ -74,7 +76,9 @@ PluginInsert::PluginInsert (Session& s, boost::shared_ptr<Plugin> plug, Placemen
}
PluginInsert::PluginInsert (Session& s, const XMLNode& node)
: Processor (s, "unnamed plugin insert", PreFader)
: Processor (s, "unnamed plugin insert", PreFader),
_signal_analysis_collected_nframes(0),
_signal_analysis_collect_nframes_max(0)
{
if (set_state (node)) {
throw failed_constructor();
@ -92,7 +96,9 @@ PluginInsert::PluginInsert (Session& s, const XMLNode& node)
}
PluginInsert::PluginInsert (const PluginInsert& other)
: Processor (other._session, other._name, other.placement())
: Processor (other._session, other._name, other.placement()),
_signal_analysis_collected_nframes(0),
_signal_analysis_collect_nframes_max(0)
{
uint32_t count = other._plugins.size();
@ -282,6 +288,13 @@ PluginInsert::deactivate ()
void
PluginInsert::connect_and_run (BufferSet& bufs, nframes_t nframes, nframes_t offset, bool with_auto, nframes_t now)
{
// Calculate if, and how many frames we need to collect for analysis
nframes_t collect_signal_nframes = (_signal_analysis_collect_nframes_max -
_signal_analysis_collected_nframes);
if (nframes < collect_signal_nframes) { // we might not get all frames now
collect_signal_nframes = nframes;
}
uint32_t in_index = 0;
uint32_t out_index = 0;
@ -311,10 +324,45 @@ PluginInsert::connect_and_run (BufferSet& bufs, nframes_t nframes, nframes_t off
}
}
if (collect_signal_nframes > 0) {
// collect input
//std::cerr << "collect input, bufs " << bufs.count().n_audio() << " count, " << bufs.available().n_audio() << " available" << std::endl;
//std::cerr << " streams " << input_streams().n_audio() << std::endl;
//std::cerr << "filling buffer with " << collect_signal_nframes << " frames at " << _signal_analysis_collected_nframes << std::endl;
for (uint32_t i = 0; i < input_streams().n_audio(); ++i) {
_signal_analysis_input_bufferset.get_audio(i).read_from(
bufs.get_audio(i),
collect_signal_nframes,
_signal_analysis_collected_nframes); // offset is for target buffer
}
}
for (vector<boost::shared_ptr<Plugin> >::iterator i = _plugins.begin(); i != _plugins.end(); ++i) {
(*i)->connect_and_run (bufs, in_index, out_index, nframes, offset);
}
if (collect_signal_nframes > 0) {
// collect output
//std::cerr << " output, bufs " << bufs.count().n_audio() << " count, " << bufs.available().n_audio() << " available" << std::endl;
//std::cerr << " streams " << output_streams().n_audio() << std::endl;
for (uint32_t i = 0; i < output_streams().n_audio(); ++i) {
_signal_analysis_output_bufferset.get_audio(i).read_from(
bufs.get_audio(i),
collect_signal_nframes,
_signal_analysis_collected_nframes); // offset is for target buffer
}
_signal_analysis_collected_nframes += collect_signal_nframes;
assert(_signal_analysis_collected_nframes <= _signal_analysis_collect_nframes_max);
if (_signal_analysis_collected_nframes == _signal_analysis_collect_nframes_max) {
_signal_analysis_collect_nframes_max = 0;
_signal_analysis_collected_nframes = 0;
AnalysisDataGathered(&_signal_analysis_input_bufferset,
&_signal_analysis_output_bufferset);
}
}
/* leave remaining channel buffers alone */
}
@ -508,6 +556,17 @@ PluginInsert::configure_io (ChanCount in, ChanCount out)
return false;
}
// we don't know the analysis window size, so we must work with the
// current buffer size here. each request for data fills in these
// buffers and the analyser makes sure it gets enough data for the
// analysis window
_signal_analysis_input_bufferset.ensure_buffers (in, session().engine().frames_per_cycle());
_signal_analysis_input_bufferset.set_count(in);
_signal_analysis_output_bufferset.ensure_buffers(out, session().engine().frames_per_cycle());
_signal_analysis_output_bufferset.set_count(out);
return Processor::configure_io (in, out);
}