Add explicit round/floor integer multiply/divide

This fixes various rounding issues. Notably superclock to sample
conversion must always round down when playing forward.

`::process (start, end, speed = 1)` uses exclusive end.
Processing begins at `start` and end ends just before `end`.
Next cycle will begin with the current end.

One example where this failed:
 - New session at 48kHz
 - Change tempo to 130 BPM
 - Enable snap to 1/8 note
 - Snap playhead to 1|3|0
 - Enable Metronome
 - Play

`assert (superclock_to_samples ((*i).sclock(), sample_rate()) < end);`

end = 177231 samples == superclock 1042118280
A grid point is found at superclock 1042116920 (that is < 1042118280).
However converting it back to samples rounded it to sample 177231 == end,
while actual location is 1360 super-clock ticks before end.

The metronome click has to be started this cycle, since the same
position will not be found at the beginning of the next cycle, with
start = 177232.

Similarly a samplecnt_t t, converted to music-time and back must not be
later than the given sample.

```
timepos_t tsc (t);
assert (timepos_t::from_ticks (tsc.ticks ()).samples () <= t);
```

IOW. When playing forward, all super-clock time between 1|1|0 and 1|1|1
should round down to 1|1|0. "We have not yet reached the first tick".
This commit is contained in:
Robin Gareus 2022-10-22 02:10:05 +02:00
parent e9bafde628
commit 14da117bc8
5 changed files with 44 additions and 10 deletions

View File

@ -50,7 +50,7 @@ namespace PBD {
*/
inline
int64_t muldiv (int64_t v, int64_t n, int64_t d)
int64_t muldiv_round (int64_t v, int64_t n, int64_t d)
{
/* either n or d or both could be negative but for now we assume that
only d could be (that is, n and d represent negative rational numbers of the
@ -92,6 +92,40 @@ int64_t muldiv (int64_t v, int64_t n, int64_t d)
return(int64_t) (((_v * _n) + hd) / _d);
#endif
}
inline
int64_t muldiv_floor (int64_t v, int64_t n, int64_t d)
{
#ifndef COMPILER_INT128_SUPPORT
boost::multiprecision::int512_t bignum = v;
bignum *= n;
bignum /= d;
try {
return bignum.convert_to<int64_t> ();
} catch (...) {
fatal << "arithmetic overflow in timeline math\n" << endmsg;
/* NOTREACHED */
return 0;
}
#else
__int128 _n (n);
__int128 _d (d);
__int128 _v (v);
/* this could overflow, but will not do so merely because we are
* multiplying two int64_t together and storing the result in an
* int64_t. Overflow will occur where (v*n)+hd > INT128_MAX (hard
* limit) or where v * n / d > INT64_T (i.e. n > d)
*/
return(int64_t) ((_v * _n) / _d);
#endif
}
} /* namespace */
#endif /* __libpbd_integer_division_h___ */

View File

@ -205,8 +205,8 @@ public:
Beats operator*(int32_t factor) const {return ticks (_ticks * factor); }
Beats operator/(int32_t factor) const { return ticks (_ticks / factor);}
Beats operator*(ratio_t const & factor) const {return ticks (PBD::muldiv (_ticks, factor.numerator(), factor.denominator())); }
Beats operator/(ratio_t const & factor) const {return ticks (PBD::muldiv (_ticks, factor.denominator(), factor.numerator())); }
Beats operator*(ratio_t const & factor) const {return ticks (PBD::muldiv_round (_ticks, factor.numerator(), factor.denominator())); }
Beats operator/(ratio_t const & factor) const {return ticks (PBD::muldiv_round (_ticks, factor.denominator(), factor.numerator())); }
Beats operator% (Beats const & b) const { return Beats::ticks (_ticks % b.to_ticks());}

View File

@ -47,8 +47,8 @@ static inline superclock_t superclock_ticks_per_second() { if (!scts_set) { rais
static inline superclock_t superclock_ticks_per_second() { return _superclock_ticks_per_second; }
#endif
static inline superclock_t superclock_to_samples (superclock_t s, int sr) { return PBD::muldiv (s, sr, superclock_ticks_per_second()); }
static inline superclock_t samples_to_superclock (int64_t samples, int sr) { return PBD::muldiv (samples, superclock_ticks_per_second(), superclock_t (sr)); }
static inline superclock_t superclock_to_samples (superclock_t s, int sr) { return PBD::muldiv_floor (s, sr, superclock_ticks_per_second()); }
static inline superclock_t samples_to_superclock (int64_t samples, int sr) { return PBD::muldiv_round (samples, superclock_ticks_per_second(), superclock_t (sr)); }
LIBTEMPORAL_API extern int most_recent_engine_sample_rate;

View File

@ -245,7 +245,7 @@ class LIBTEMPORAL_API Tempo {
static void superbeats_to_beats_ticks (int64_t sb, int32_t& b, int32_t& t) {
b = sb / big_numerator;
int64_t remain = sb - (b * big_numerator);
t = int_div_round ((Temporal::ticks_per_beat * remain), big_numerator);
t = PBD::muldiv_floor (Temporal::ticks_per_beat, remain, big_numerator);
}
bool active () const { return _active; }

View File

@ -201,9 +201,9 @@ timecnt_t
timecnt_t::scale (ratio_t const & r) const
{
if (time_domain() == AudioTime) {
return timecnt_t::from_superclock (PBD::muldiv (_distance.val(), r.numerator(), r.denominator()), _position);
return timecnt_t::from_superclock (PBD::muldiv_round (_distance.val(), r.numerator(), r.denominator()), _position);
} else {
return timecnt_t::from_ticks (PBD::muldiv (_distance.val(), r.numerator(), r.denominator()), _position);
return timecnt_t::from_ticks (PBD::muldiv_round (_distance.val(), r.numerator(), r.denominator()), _position);
}
}
@ -592,9 +592,9 @@ timepos_t
timepos_t::scale (ratio_t const & n) const
{
if (time_domain() == AudioTime) {
return timepos_t::from_superclock (PBD::muldiv (val(), n.numerator(), n.denominator()));
return timepos_t::from_superclock (PBD::muldiv_round (val(), n.numerator(), n.denominator()));
} else {
return timepos_t::from_ticks (PBD::muldiv (val(), n.numerator(), n.denominator()));
return timepos_t::from_ticks (PBD::muldiv_round (val(), n.numerator(), n.denominator()));
}
}