ardour/libs/ardour/dsp_filter.cc

278 lines
6.4 KiB
C++
Raw Normal View History

2016-02-03 14:42:47 -05:00
/*
* Copyright (C) 2016 Robin Gareus <robin@gareus.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include <stdlib.h>
#include <math.h>
#include "ardour/dB.h"
2016-02-03 14:42:47 -05:00
#include "ardour/dsp_filter.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
using namespace ARDOUR::DSP;
void
ARDOUR::DSP::memset (float *data, const float val, const uint32_t n_samples) {
for (uint32_t i = 0; i < n_samples; ++i) {
data[i] = val;
}
}
void
ARDOUR::DSP::mmult (float *data, float *mult, const uint32_t n_samples) {
for (uint32_t i = 0; i < n_samples; ++i) {
data[i] *= mult[i];
}
}
float
ARDOUR::DSP::log_meter (float power) {
// compare to gtk2_ardour/logmeter.h
static const float lower_db = -192.f;
static const float upper_db = 0.f;
static const float non_linearity = 8.0;
return (power < lower_db ? 0.0 : powf ((power - lower_db) / (upper_db - lower_db), non_linearity));
}
float
ARDOUR::DSP::log_meter_coeff (float coeff) {
if (coeff <= 0) return 0;
return log_meter (fast_coefficient_to_dB (coeff));
}
void
ARDOUR::DSP::peaks (float *data, float &min, float &max, uint32_t n_samples) {
for (uint32_t i = 0; i < n_samples; ++i) {
if (data[i] < min) min = data[i];
if (data[i] > max) max = data[i];
}
}
2016-02-03 14:42:47 -05:00
LowPass::LowPass (double samplerate, float freq)
: _rate (samplerate)
, _z (0)
{
set_cutoff (freq);
}
void
LowPass::set_cutoff (float freq)
{
_a = 1.f - expf (-2.f * M_PI * freq / _rate);
}
void
LowPass::proc (float *data, const uint32_t n_samples)
{
// localize variables
const float a = _a;
float z = _z;
for (uint32_t i = 0; i < n_samples; ++i) {
data[i] += a * (data[i] - z);
z = data[i];
}
_z = z;
}
void
LowPass::ctrl (float *data, const float val, const uint32_t n_samples)
{
// localize variables
const float a = _a;
float z = _z;
for (uint32_t i = 0; i < n_samples; ++i) {
data[i] += a * (val - z);
z = data[i];
}
_z = z;
}
///////////////////////////////////////////////////////////////////////////////
BiQuad::BiQuad (double samplerate)
: _rate (samplerate)
, _z1 (0.0)
, _z2 (0.0)
, _a1 (0.0)
, _a2 (0.0)
, _b0 (1.0)
, _b1 (0.0)
, _b2 (0.0)
{
}
BiQuad::BiQuad (const BiQuad &other)
: _rate (other._rate)
, _z1 (0.0)
, _z2 (0.0)
, _a1 (other._a1)
, _a2 (other._a2)
, _b0 (other._b0)
, _b1 (other._b1)
, _b2 (other._b2)
{
}
void
BiQuad::run (float *data, const uint32_t n_samples)
{
for (uint32_t i = 0; i < n_samples; ++i) {
const float xn = data[i];
const float z = _b0 * xn + _z1;
_z1 = _b1 * xn - _a1 * z + _z2;
_z2 = _b2 * xn - _a2 * z;
data[i] = z;
}
}
void
BiQuad::compute (Type type, double freq, double Q, double gain)
{
if (Q <= .001) { Q = 0.001; }
if (freq <= 1.) { freq = 1.; }
if (freq >= _rate) { freq = _rate; }
2016-02-03 14:42:47 -05:00
/* Compute biquad filter settings.
* Based on 'Cookbook formulae for audio EQ biquad filter coefficents'
* by Robert Bristow-Johnson
*/
const double A = pow (10.0, (gain / 40.0));
2016-02-03 14:42:47 -05:00
const double W0 = (2.0 * M_PI * freq) / _rate;
const double sinW0 = sin (W0);
const double cosW0 = cos (W0);
2016-02-03 14:42:47 -05:00
const double alpha = sinW0 / (2.0 * Q);
const double beta = sqrt (A) / Q;
double _a0;
switch (type) {
case LowPass:
_b0 = (1.0 - cosW0) / 2.0;
_b1 = 1.0 - cosW0;
_b2 = (1.0 - cosW0) / 2.0;
_a0 = 1.0 + alpha;
_a1 = -2.0 * cosW0;
_a2 = 1.0 - alpha;
break;
case HighPass:
_b0 = (1.0 + cosW0) / 2.0;
_b1 = -(1.0 + cosW0);
_b2 = (1.0 + cosW0) / 2.0;
_a0 = 1.0 + alpha;
_a1 = -2.0 * cosW0;
_a2 = 1.0 - alpha;
break;
case BandPassSkirt: /* Constant skirt gain, peak gain = Q */
_b0 = sinW0 / 2.0;
_b1 = 0.0;
_b2 = -sinW0 / 2.0;
_a0 = 1.0 + alpha;
_a1 = -2.0 * cosW0;
_a2 = 1.0 - alpha;
break;
case BandPass0dB: /* Constant 0 dB peak gain */
_b0 = alpha;
_b1 = 0.0;
_b2 = -alpha;
_a0 = 1.0 + alpha;
_a1 = -2.0 * cosW0;
_a2 = 1.0 - alpha;
break;
case Notch:
_b0 = 1.0;
_b1 = -2.0 * cosW0;
_b2 = 1.0;
_a0 = 1.0 + alpha;
_a1 = -2.0 * cosW0;
_a2 = 1.0 - alpha;
break;
case AllPass:
_b0 = 1.0 - alpha;
_b1 = -2.0 * cosW0;
_b2 = 1.0 + alpha;
_a0 = 1.0 + alpha;
_a1 = -2.0 * cosW0;
_a2 = 1.0 - alpha;
break;
case Peaking:
_b0 = 1.0 + (alpha * A);
_b1 = -2.0 * cosW0;
_b2 = 1.0 - (alpha * A);
_a0 = 1.0 + (alpha / A);
_a1 = -2.0 * cosW0;
_a2 = 1.0 - (alpha / A);
break;
case LowShelf:
_b0 = A * ((A + 1) - ((A - 1) * cosW0) + (beta * sinW0));
_b1 = (2.0 * A) * ((A - 1) - ((A + 1) * cosW0));
_b2 = A * ((A + 1) - ((A - 1) * cosW0) - (beta * sinW0));
_a0 = (A + 1) + ((A - 1) * cosW0) + (beta * sinW0);
_a1 = -2.0 * ((A - 1) + ((A + 1) * cosW0));
_a2 = (A + 1) + ((A - 1) * cosW0) - (beta * sinW0);
break;
case HighShelf:
_b0 = A * ((A + 1) + ((A - 1) * cosW0) + (beta * sinW0));
_b1 = -(2.0 * A) * ((A - 1) + ((A + 1) * cosW0));
_b2 = A * ((A + 1) + ((A - 1) * cosW0) - (beta * sinW0));
_a0 = (A + 1) - ((A - 1) * cosW0) + (beta * sinW0);
_a1 = 2.0 * ((A - 1) - ((A + 1) * cosW0));
_a2 = (A + 1) - ((A - 1) * cosW0) - (beta * sinW0);
break;
default:
abort(); /*NOTREACHED*/
break;
}
_b0 /= _a0;
_b1 /= _a0;
_b2 /= _a0;
_a1 /= _a0;
_a2 /= _a0;
}
float
BiQuad::dB_at_freq (float freq) const
{
const double W0 = (2.0 * M_PI * freq) / _rate;
const float c1 = cosf (W0);
const float s1 = sinf (W0);
const float A = _b0 + _b2;
const float B = _b0 - _b2;
const float C = 1.0 + _a2;
const float D = 1.0 - _a2;
const float a = A * c1 + _b1;
const float b = B * s1;
const float c = C * c1 + _a1;
const float d = D * s1;
#define SQUARE(x) ( (x) * (x) )
return 20.f * log10f (sqrtf ((SQUARE(a) + SQUARE(b)) * (SQUARE(c) + SQUARE(d))) / (SQUARE(c) + SQUARE(d)));
}